Produção acadêmica-PPGPM
URI Permanente para esta coleção
Navegar
Navegando Produção acadêmica-PPGPM por Autor "Campos, Tiago Moreira Bastos"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
Item Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix(Taylor & Francis) Aguiar, Veronica Cristina Pêgo Fiebig; Bezerra, Rayssa do Nascimento; Santos, Kennedy Wallace dos; Gonçalves, Isabela dos Santos; Costa, Karen Julie Santos Grancianinov; Lauda, Diogo Ponte; Campos, Tiago Moreira Bastos; Prado, Renata Falchete do; Vasconcellos, Luana Marotta Reis de; Oliveira, Ivone Regina deIn recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable poly- meric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected mac- ropores, while the hybrid scaffold exhibited a heterogeneous mor- phology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degrada- tion tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total pro- tein production and the formation of mineralization nodules, indi- cating a positive influence on cell culture.Item Hydrolytically synthesized chlorinated bioactive glasses: Structural reticulation and controlled ion release without alkaline shift(Elsevier) Oliveira, Ivone Regina de; Gonçalves, Isabela dos Santos; Abdala, Julia Marinzeck de Alcantara; Abreu, Bianca Lapadula Heckert Franklin de; Cardoso, Gustavo Luiz Bueno; Thim, Gilmar Patrocínio; Campos, Tiago Moreira BastosBioactive glasses are recognized for their ability to release ions and induce apatite formation in physiological media. However, conventional glasses often cause a marked increase in pH during dissolution, which may lead to cytotoxic effects. In this study, chlorinated bioactive glasses were synthesized via a hydrolytic sol–gel route using tetraethyl orthosilicate (TEOS) and calcium chloride, aiming to obtain materials with efficient ionic release and controlled pH response. Samples were thermally treated at 500 ◦C, 600 ◦C, and 700 ◦C and characterized by FTIR, Raman spectroscopy, specific surface area (BET), scanning electron microscopy (SEM), and ionic release tests. The chlorinated bioactive glass calcined at 500 ◦C exhibited the most promising combination of charac- teristics: presence of hydroxyl groups (–OH), a structure predominantly composed of Q2 units, high specific surface area (31.75 m2 g−1), well-defined mesoporosity, high ionic release (~2000 μS cm−1), and effective control of pH increase in aqueous media. These properties directly contribute to bioactivity and indicate that this ma- terial can be incorporated into biomedical formulations without the need for prior neutralization steps, in contrast to many conventional bioactive glasses. The results also demonstrate that the hydrolytic sol–gel route enables the synthesis of chlorinated bioactive glasses with tunable structure and dissolution profiles, overcoming limitations associated with more complex routes, such as those based on ion-exchange resins or precursors like metasilicate. The ability to combine high ionic release with low impact on pH represents a relevant advance in the design of bioceramics for regenerative and dental applications.Item Influence of manufacturing parameters on bioactive glass 45S5: Structural analysis and applications in bone tissue engineering(Elsevier) Santos, Kennedy Wallace dos; Costa, Karen Julie Santos Grancianinov; Gonçalves, Isabela dos Santos; Alves, M.; Lauda, Diogo Ponte; Vasconcellos, Luana Marotta Reis de; Campos, Tiago Moreira Bastos; Oliveira, Ivone Regina deBioactive glass (BG-45S5) production through the melting process is affected by a wide variety of parameters. This study investigated the synthesis of BG-45S5 granules and the process variables to produce a bioactive and osteoinductive BG for bone grafting applications. The melting process was initially analyzed by varying pa- rameters such as crucible type and pouring environment using P2O5 as phosphorus precursor. The obtained products were characterized by crystalline phases, characteristic chemical groups, particle size distribution, and chemical composition. Materials poured into graphite or steel molds resulted in particle sizes more suitable for applications in granular form. Using a platinum crucible yielded a chemical composition closer to the target when compared with another ceramic crucible. Subsequently, the melting process was evaluated to different phosphorus precursor (P2O5 or Na2HPO4) and melting duration (1 or 2 h) in a platinum crucible verifying their effects on the thermal behavior, chemical composition and structure of BG-45S5. Employing Na2HPO4 as a precursor led to higher glass transition and crystallization temperatures as compared to P2O5, enhancing glass homogeneity and structural stability. The product with better characteristics in terms of composition and structure was further characterized for bioactivity and cell culture behavior, showing a greater amount of mineralization nodules when compared to commercial hydroxyapatite. This is particularly due to its behavior as the solubility and interaction in biological environments.