Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Bonfim, Victor de Souza A."

Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices?
    (MDPI) Bonfim, Victor de Souza A.; Oliveira, Daniel Augusto Barra de; Fantuzzi, Felipe; Pilling, Sergio
    Astrophysical ices play a crucial role in the chemistry of cold interstellar environments. However, their diverse compositions, temperatures, and grain morphologies pose significant challenges for molecular identification and quantification through infrared observations. We investigate the ability of implicit solvation approaches to capture temperature-dependent infrared spectral features of CO2 molecules embedded in astrophysical ice analogues, comparing their performance to that of explicit ice models and experimental data. Using DFT calculations and vibrational frequency scaling, we model CO2 trapped in both amorphous (cold) and crystalline (warm) H2O ice clusters. The implicit model qualitatively identifies certain trends but fails to reliably capture the magnitude of frequency shifts and band strengths. Explicit models correctly reproduce the gas-to-solid redshifts for both the asymmetric stretch and bending modes; however, neither approach successfully replicates the experimentally observed temperature-dependent trend in the bending mode. While continuum-like methods may be useful as first-order approximations, explicit modelling of the molecular environment is essential for accurately simulating the infrared spectral behaviour of CO2 in astrophysical ices and for interpreting observational data on ice composition and evolution.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por