Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Gerasimenko, Svitlana"

Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Characterization of acetonitrile ice irradiated by X-rays employing the procoda code – II. Desorption processes
    (Royal Astronomical Society) Carvalho, Geanderson Araújo; Pilling, Sergio; Gerasimenko, Svitlana
    In this work, we focus on the study of radiation-induced desorption processes that occurred in acetonitrile ice irradiated by broad-band X-rays (6 eV to 2 keV) monitored by Fourier transform infrared spectroscopy at different radiation fluences. In a previous work, we used the procoda code to derive the chemical evolution of the ice. Here, we have observed that the acetonitrile desorbed column density is at least two orders of magnitude larger than the desorbed column densities of daughter or granddaughter molecular species at chemical equilibrium stage. This indicates that total desorption column density is mainly governed by the father molecule, as also previously hypothesized in experimental studies. This occurs basically because the acetonitrile column density is larger than the other ones. In particular, at chemical equilibrium acetonitrile desorption column density represents almost 98 per cent of the total, while it is close to 1 per cent for H, CN, and CH2, the species with larger molecular desorption percentages at chemical equilibrium. Another derived quantity is what we called intrinsic desorption rate, which is a number per second for individual species. Some of the larger intrinsic desorption rates were 6.2 × 10−6 (CH3CN), 6.2 × 10−6 (CN), 5.7 × 10−6 (H), 5.7 × 10−6 (CH2), and 4.4 × 10−6 (C2N2). These results help to put constraints in astrochemical models and can also be useful to clarify some astronomical radio observations.
  • Carregando...
    Imagem de Miniatura
    Item
    Characterization of the chemical evolution of CH4 ices under processing by cosmic ray analogues with the PROCODA code – I. Effective reaction rate coefficients and chemical equilibrium phase
    (Royal Astronomical Society) Gerasimenko, Svitlana; Carvalho, Geanderson Araújo; Zanatto, Fernanda; Santana, Fernanda Kelly de; Pilling, Sergio
    Methane (CH4⁠), the simplest alkane, is a fundamental component of astrophysical ices, particularly in the outer Solar system and the interstellar medium. Understanding its chemical evolution under energetic particle irradiation is essential for modelling these environments. In this work, we investigate the chemical evolution of pure methane ice subjected to high-energy ion irradiation until chemical equilibrium is reached. We employ the procoda code to simulate the time-dependent evolution of molecular abundances and to determine effective reaction rate coefficients. The simulations are constrained using experimental data from a previous study, in which pure CH4 ice at 16 K was irradiated, providing the necessary input parameters for the model. Our reaction network comprises 1857 chemical reactions involving 36 molecular species, both observed and unobserved by Fourier-transform infrared spectroscopy during the experiment. The best-fitting model satisfies multiple criteria: a low for observed species, a desorption yield consistent with experimental estimates, similar trends in abundance evolution for observed and unobserved species, and overall mass conservation. At chemical equilibrium, the most abundant species predicted by the model are H2 (38.0 per cent), CH4 (20.8 per cent), H (17.0 per cent), and CH3CH2CH3 (16.9 per cent). The total desorption yield is calculated as  molecules/ion, and the effective destruction cross-section of CH4 is cm. The reaction rate coefficients and equilibrium abundances derived from this study provide valuable inputs for astrochemical models, enhancing our understanding of CH4 processing in interstellar ices under cosmic ray irradiation.

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por