Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Habarulema, John Bosco"

Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Absence of High Frequency Echoes From Ionosondes During the 23–25 April 2023 Geomagnetic Storm; What Happened?
    (Advancing Earth and Space Sciences) Habarulema, John Bosco; Zhang, Yongliang; Matamba, Tshimangadzo; Lu, Gang; Katamzi‐Joseph, Zama; Fagundes, Paulo Roberto; Okoh, Daniel; Seemala, Gopi
    We report an unusual event on absence of high frequency (HF) echoes in ionosonde observations from the ionospheric F2 region during the geomagnetic storm of 23–25 April 2023. This event was observed in both southern and northern hemispheres over two stations, Grahamstown (33.3°S, 26.5°E), South Africa and Pruhonice (50.0°N, 14.6°E), Czech Republic. Significant O/N2 depletion over the stations was observed by TIMED/GUVI, indicating a strong negative ionospheric storm. This is unique since absence of echoes in ionosonde measurements is usually due to strong radio absorption in the ionosphere associated with solar flares. However, there was no flare activity during the periods of “absent” F2 HF echoes. On the other hand, the ionosonde detected echoes from E‐layer. TIEGCM simulation reproduced TIMED/GUVI O/N2 depletion and showed that NmE was larger than NmF2 on dayside over Pruhonice. TIMED/GUVI O/N2 also showed a clear spatial gradient in the O/N2 depleted regions, suggesting F‐region ionosphere was tilted. By estimating the critical frequency of the F2 layer using GNSS observations, we have shown that it wasn't possible for the ionospheric electron density to reach depletion levels prohibiting reflection of HF echoes from ionosondes. We suggest that this phenomena may have been caused by either (a) maximum electron density of E layer exceeding that of F2 layer and/or (b) ionospheric tilting which made the signals to be reflected far away from the ionosonde locations.
  • Carregando...
    Imagem de Miniatura
    Item
    Ionospheric disturbances in a large area of the terrestrial globe by two strong solar flares of September 6, 2017, the strongest space weather events in the last decade
    (Elsevier) Fagundes, Paulo Roberto; Pezzopane, Michael; Habarulema, John Bosco; Venkatesh, Karnam; Dias, Maukers Alem Lima; Tardelli, Alexandre; Abreu, Alessandro José de; Pillat, Valdir Gil; Pignalberi, Alessio; Bolzan, Maurício José Alves; Ribeiro, Brunno Augusto Gomes; Vieira, Francisco; Raulin, Jean-Pierre; Denardini, Clezio Marcos; Seemala, Gopi K.; Arcanjo, Mateus de Oliveira
    On September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate cor- responding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Elec- tron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a dura- tion of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geo- magnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.
  • Carregando...
    Imagem de Miniatura
    Item
    Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes
    (Elsevier) Fagundes, Paulo Roberto; Tsali-Brown, Vera Yesutor; Pillat, Valdir Gil; Arcanjo, Mateus de Oliveira; Venkatesh, Kavutarapu; Habarulema, John Bosco; Bolzan, Maurício José Alves; Jesusm Rodolfo F. de; Abreu, Alessandro José de; Tardelli, Alexandre; Vieira, Francisco; Denardini, Clezio Marcos
    Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por