Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Leite, Priscila Maria Sarmeiro Correa Marciano"

Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Effect of water and alkali on purification bacterial cellulose membrane from Kombucha
    (CDRR Editors) Sousa, Letícia Pereira dos Santos Barbosa de; Leite, Priscila Maria Sarmeiro Correa Marciano; Vieira, Angela Aparecida; Faria, Anderson Carlos; Vieira, Lucia
    Bacterial cellulose membrane (BCM) is a biomaterial synthesized by bacteria of the genus Gluconocetobacter hansenii with a higher degree of purity than plant cellulose. The commonly used raw material for manipulating bacterial cellulose is kombucha, a beverage consumed by a vast population around the world that promises health benefits. The beverage is composed of tea species Camellia sinenses and a carbon source, refined sucrose, and a starter culture of bacteria and yeast with 10% fermented tea (starter tea) to activate the fermentative process. The Kombucha’s bacterial cellulose membranes (KBCM) are formed over 7 to 10 days on the surface of the fermented product and have the appearance of a gelatinous membrane, this being the by-product of interest. In this work, the objective was to obtain the membrane composed of cellulose via Kombucha and purify it to obtain crystalline cellulose. The purification was performed with distilled water and 0.5M NaOH sodium hydroxide solution to remove residues from the fermentation, successfully removing sugars and bacteria. At the end of the experiments, a lighter film was obtained with coloration close to white, and comparative analyses were performed to verify the structural chemical composition, crystallinity, and morphology of the samples by techniques FTIR, DRX, and SEM, respectively. Then, once the biomaterial was purified, the range of applications expanded to several products to meet the biomedical area, sustainable packaging, and even the fashion industry.
  • Carregando...
    Imagem de Miniatura
    Item
    Tribocorrosion Susceptibility and Cell Viability Study of 316L Stainless Steel and Ti6Al4V Titanium Alloy with and without DLC Coatings
    (MDPI) Sene, Ana Claudia; Silva, Michely Glenda Pereira da; Macário, Paulo Fabrício; Vieira, Angela Aparecida; Leite, Priscila Maria Sarmeiro Correa Marciano; Silva, Newton Soares da; Marques, Francisco Das Chagas; Vieira, Lúcia
    Stainless steel (SS316L) and titanium alloy (Ti6Al4V) exhibit suitable properties for biomed- ical applications; however, the tribocorrosion of these materials, which is associated with metallosis, is still a significant concern. This work investigates the effectiveness of DLC smoothing coatings applied to the metals to reduce tribocorrosion and improve cell viability. The study was motivated by many reports of metallosis caused by metal debris in the soft tissues of the body. DLC coatings were produced using the plasma-enhanced chemical vapor deposition (PECVD) technique. The cytotoxicity, genotoxicity, and cell viability of metallic samples with and without DLC coatings were analyzed, considering the chemical composition of the coating and metallic components. The results show that the DLC coatings presented suitable interaction properties and no cytotoxicity or genotoxicity when exposed to the cellular environment, compared with the control group (p < 0.0001). They also demonstrated cell viability, low friction representing a reduction of 80%, and hardness 23–26 GPa, making them ideal for use on fixed implants. It is necessary to control the thickness and roughness of the coating to avoid pinholes and increase the corrosion protection of implants. These DLC coatings with low friction coefficients could facilitate the fixation of implantable pins and screws, including Kirschner wires.

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por