Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Macho, Eduardo Perez"

Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Climatology of ionospheric amplitude scintillation on GNSS signals at south American sector during solar cycle 24
    (Elsevier) Macho, Eduardo Perez; Correia, Emília; Spogli, Luca; Muella, Marcio Tadeu de Assis Honorato
    Scintillations are caused by ionospheric irregularities and can affect the propagation of trans-ionospheric radio signals. One way to understand and predict the impact of such irregularities on Global Navigation Satellite System (GNSS) signals is through the spatial/temporal characterization of the scintillation’s climatology during different phases of a solar cycle covering different latitudes and longitudes. This characterization is performed using amplitude scintillation index S4, during the full solar cycle 24, in the South American (SA) sector. The investigation considers the diurnal, daily, and seasonal variation of S4 index for climatological purpose, and the goal of this study is to investigate the scintillations covering a large spatial scale during the full solar cycle 24. The characterization shows a latitudinal asymmetry, whereas at the south, the scintillations were more frequent and their peak was more distant from the magnetic equator, which can be attributed by the South Atlantic Magnetic Anomaly (SAMA), and/or by the transequatorial meridional neutral winds. It also shows a longitudinal asymmetry, where the scintillations at the eastern sector occurred between November and February, while at the western sector, they occurred during the months of October, November, February and March, which can be attributed to the difference between the magnetic and geographic equators. The occurrence of scintillations during two distinct geomagnetic storms with similar storm time in the SA sector is also presented.
  • Carregando...
    Imagem de Miniatura
    Item
    Statistical analysis on the ionospheric response over South American mid- and near high-latitudes during 70 intense geomagnetic storms occurred in the period of two decades
    (Elsevier) Abreu, Alessandro José de; Correia, Emilia; Jesus, Rodolfo de; Venkatesh, Kavutarapu; Macho, Eduardo Perez; Roberto, Marisa; Fagundes, Paulo Roberto; Gende, Maurício Alfredo
    The first-time statistical response of the positive and negative ionospheric storms phases using Vertical Total Electron Content (VTEC) measurements during 70 geomagnetic storms at near high- and mid-latitudes regions in the Antarctic and Argentine/Chilean sectors in the Southern hemisphere are investigated. The study covers the years between 1999 and 2018 of solar cycles 23 and 24, using the Dst ≤ −100 nT as a criterion for all 70 storms selected. Significant features of solar cycle, seasonal and local time of ionospheric storms are showed. Our results indicate that the occurrence of geomagnetic storms follows a pattern of solar activity dependence, and also indicate a predominance of positive and positive-negative phases during autumn, winter, and spring at mid-latitudes and winter at near high-latitudes. Negative and negative-positive phases occur during all seasons at near high- and mid-latitudes. In addition, positive phases occur more frequently during the daytime while the negative phases occur predominantly in nighttime. There is also a predominance of positive and positive-negative phases simultaneously at near high- and mid-latitudes in the Antarctic and Argentine/Chilean sectors. The percentages of occurrence of positive and positive-negative phases are of 50% and 19%, respectively, at mid-latitude and 60% and 22%, respectively, at near high-latitudes. Negative and negative-positive phases are below 9% at both latitudes.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por