Navegando por Autor "Ramos, Lucas de Paula"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Item Curcuma longa L. Extract and Photodynamic Therapy are Effective against Candida spp. and Do Not Show Toxicity In Vivo(Wiley Online Library) Meccatti, Vanessa Marques; Moura, Larissa de Souza; Pinto, Juliana Guerra; Ferreira‐Strixino, Juliana; Hasna, Amjad Abu; Figueiredo-Godoi, Lívia Mara Alves; Junqueira, Juliana Campos; Marcucci, María Cristina; Ramos, Lucas de Paula; Carvalho, Cláudio Antônio Talge; Pucci, César Rogério; Oliveira, Luciane Dias deRadiotherapy induces a higher level of Candida spp. colonization, resulting in oral candidiasis. This study aimed to evaluate the phototransformation potential of the glycolic extract of Curcuma longa (C. longa); the antifungal activity of C. longa, curcumin, and antifungal photodynamic therapy (aPDT) with blue light-emitting diodes “LED” on Candida albicans and Candida tropicalis in vitro; and the toxicity of C. longa and curcumin in Galleria mellonella model. In order to confirm the light absorption capacity of the C. longa extract, its phototransformation potential was evaluated. The antifungal effect of C. longa, curcumin, and aPDT was evaluated over Candida spp. Finally, the toxicity of C. longa and curcumin was evaluated on the Galleria mellonella model. The data were analyzed using the GraphPad Prism 5.0 software considering α = 5%. It was found that C. longa, curcumin, and aPDT using blue LED have an antifungal effect over C. albicans and C. tropicalis. The extract of C. longa 100 mg/mL and curcumin 200 μg/mL do not show toxicity on Galleria mellonella model.Item Modulation of heat shock protein expression and cytokine levels in MCF‐7 cells through photodynamic therapy(Springer-Verlag London Ltd.) Santos, Mariela Inês Batista dos; Godoi, Bruno Henrique; Silva, Newton Soares da; Oliveira, Luciane Dias de; Ramos, Lucas de Paula; Cintra, Ricardo Cesar; Pacheco‐Soares, CristinaIn this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.