Navegando por Autor "Valerdi, Mabel"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
Item Chemical abundances in Seyfert galaxies – IX. Helium abundance estimates(Royal Astronomical Society) Dors Junior, Oli Luiz; Valerdi, Mabel; Lemes, Priscila Freitas; Krabbe, Angela Cristina; Riffel, Rogemar André; Amôres, Eduardo Brescansin; Riffel, Rogério; Armah, Mark; Monteiro, Adriano Francisco; Oliveira Junior, Celso Benedito deFor the first time, the helium abundance relative to hydrogen (He/H), which relied on direct measurements of the electron temperature, has been derived in the narrow line regions (NLRs) from a local sample of Seyfert 2 nuclei. In view of this, optical emission line intensities [3000 < λ(Å) < 7000] of 65 local Seyfert 2 nuclei (z < 0.2), taken from Sloan Digital Sky Survey Data Release 15 and additional compilation from the literature, were considered. We used photoionization model grid to derive an Ionization Correction Factor (ICF) for the neutral helium. The application of this ICF indicates that the NLRs of Seyfert 2 present a neutral helium fraction of ∼50 per cent in relation to the total helium abundance. We find that Seyfert 2 nuclei present helium abundance ranging from 0.60 to 2.50 times the solar value, while ∼85 per cent of the sample present oversolar abundance values. The derived (He/H)–(O/H) abundance relation from the Seyfert 2 is stepper than that of star-forming regions (SFs) and this difference could be due to excess of helium injected into the interstellar medium by the winds of Wolf–Rayet stars. From a regression to zero metallicity, by using Seyfert 2 estimates combined with SFs estimates, we obtained a primordial helium mass fraction Yp = 0.2441 ± 0.0037, a value in good agreement with the one inferred from the temperature fluctuations of the cosmic microwave background by the Planck CollaborationItem Chemical abundances in Seyfert galaxies – X. Sulphur abundance estimates(Royal Astronomical Society) Dors Junior, Oli Luiz; Valerdi, Mabel; Riffel, Rogemar André; Riffel, Rogério; Cardaci, Mónica Viviana; Hägele, Guilhermo Frederico; Armah, Mark; Revalski, Mitchell; Flury, Sophia; Lemes, Priscila Freitas; Amôres, Eduardo; Krabbe, Angela Cristina; Binette, Luc; Feltre, Anna; Bergmann, Thaisa StorchiFor the first time, the sulphur abundance relative to hydrogen (S/H) in the narrow-line regions of a sample of Seyfert 2 nuclei (Sy 2s) has been derived via direct estimation of the electron temperature. Narrow emission-line intensities from the Sloan Digital Sky Survey (SDSS) Data Release 17 (DR17) [in the wavelength range 3000 < λ(Å) < 9100] and from the literature for a sample of 45 nearby (z < 0.08) Sy 2s were considered. Our direct estimates indicate that Sy 2s have similar temperatures in the gas region where most of the S+ ions are located in comparison with that of star-forming regions (SFs). However, Sy 2s present higher temperature values (∼10 000 K) in the region where most of the S2+ ions are located relative to that of SFs. We derive the total sulphur abundance in the range of 6.2 12 + log(S/H) 7.5, corresponding to 0.1–1.8 times the solar value. These sulphur abundance values are lower by ∼0.4 dex than those derived in SFs with similar metallicity, indicating a distinct chemical enrichment of the interstellar medium (ISM) for these object classes. The sulphur abundance relative to oxygen (S/O) values for our Sy 2 sample present an abrupt (∼0.5 dex) decrease with increasing oxygen abundance relative to hydrogen (O/H) for the high-metallicity regime [12 + log(O/H) 8.7)], what is not seen for the SFs. However, when our Sy 2 estimates are combined with those from a large sample of SFs, we did not find any dependence between S/O and O/H.Item Oxygen abundances in the narrow line regions of Seyfert galaxies and the metallicity–luminosity relation(Royal Astronomical Society) Armah, Mark; Riffel, Rogério; Dors Junior, Oli Luiz; Oh, Kyuseok; Koss, Michael J.; Ricci, Claudio; Trakhtenbrot, Benny; Valerdi, Mabel; Riffel, Rogemar André; Krabbe, Angela CristinaWe present oxygen abundances relative to hydrogen (O/H) in the narrow line regions (NLRs) gas phases of Seyferts 1 (Sy 1s) and Seyferts 2 (Sy 2s) active galactic nuclei (AGNs). We used fluxes of the optical narrow emission line intensities [Å] of 561 Seyfert nuclei in the local Universe ( z ≲ 0.31) from the second catalogue and data release (DR2) of the BAT AGN Spectroscopic Survey, which focuses on the Swift-BAT hard X-ray (≳ 10 keV) detected AGNs. We derived O/H from relative intensities of the emission lines via the strong-line methods. We find that the AGN O/H abundances are related to their hosts stellar masses and that they follow a downward redshift evolution. The derived O/H together with the hard X-ray luminosity (LX) were used to study the X-ray luminosity–metallicity (LX–ZNLR) relation for the first time in Seyfert galaxies. In contrast to the broad-line focused (LX–ZBLR) studies, we find that the LX–ZNLR exhibit significant anticorrelations with the Eddington ratio (λEdd) and these correlations vary with redshifts. This result indicates that the low-luminous AGNs are more actively undergoing interstellar medium enrichment through star formation in comparison with the more luminous X-ray sources. Our results suggest that the AGN is somehow driving the galaxy chemical enrichment, as a result of the inflow of pristine gas that is diluting the metal rich gas, together with a recent cessation on the circumnuclear star-formation.