Navegando por Assunto "Disturbance dynamo"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Item CIR-Driven Geomagnetic Storm and High-Intensity Long-Duration Continuous AE Activity (HILDCAA) Event: Effects on Brazilian Equatorial and Low-Latitude Ionosphere-Observations and Modeling(MDPI) Abaidoo, Samuel; Klausner, Virginia; Candido, Claudia Maria Nicoli; Pillat, Valdir Gil; Godoy, Stella Pires de Moraes Santos Ribeiro; Guedes, Fabio Becker; Toledo, Josiely Aparecida do Espirito Santo; Trigo, Laura LuizThis paper investigates the effects of a Corotating Interaction Region (CIR)/High-Speed Stream (HSS)-driven geomagnetic storm from 13 to 23 October 2003, preceding the well-known Halloween storm. This moderate storm exhibited a prolonged recovery phase and persistent activity due to a High-Intensity Long-Duration Continuous AE Activity (HILDCAA) event. We focus on low-latitude ionospheric responses induced by Prompt Penetration Electric Fields (PPEFs) and Disturbance Dynamo Electric Fields (DDEFs). To assess these effects, we employed ground-based GNSS receivers, Digisonde data, and satellite observations from ACE, TIMED, and SOHO. An empirical model by Scherliess and Fejer (1999) was used to estimate equatorial plasma drifts and assess disturbed electric fields. Results show a ∼120 km uplift in hmF2 due to PPEF, expanding the Equatorial Ionization Anomaly (EIA) crest beyond 20° dip latitude. DDEF effects during HILDCAA induced sustained F-region oscillations (∼100 km). The storm also altered thermospheric composition, with [[O]/[N2] enhancements coinciding with TEC increases. Plasma irregularities, inferred from the Rate of TEC Index (ROTI 0.5–1 TECU/min), extended from equatorial to South Atlantic Magnetic Anomaly (SAMA) latitudes. These results demonstrate prolonged ionospheric disturbances under CIR/HSS forcing and highlight the relevance of such events for understanding extended storm-time electrodynamics at low latitudes.