Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "GNSS fading characterization"

Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Spatial Characteristics of GNSS Fading and Scintillation in Low Latitudes
    (Springer Nature Link) Di Santis, Victor; Moraes, Alison; Costa, Emanoel; Sousasantos, Jonas; Silva, Paulo Renato Pereira; Souza, Ana Lucia Christovam de
    Previous studies evaluated several characteristics of ionospheric fading events and amplitude scintillation. However, a detailed analysis on how the fading profiles and scintillation probabilities vary according to the dip latitude is still required. In this work, a statistical analysis of data from four ground-based scintillation monitors was performed to evaluate how the α coefficient (first parameter of the “α–μ” probability distribution model); the deepest fading occurrence; the number of fading events per minute; and the duration of fading events change according to the dip latitudes of the ionospheric pierce points (IPPs) of transionospheric propagation paths. The results reveal a nuanced spatial variation in amplitude scintillation, emphasizing an enhanced severity within the equatorial ionization anomaly (EIA) southern crest, resulting in a clear increase in the probability of severe fading events. An increasing trend in the α fading coefficient at more poleward dip latitudes was found, in comparison with results from equatorward locations, suggesting an asymmetry favoring more severe fading events within the former region. The average fad- ing occurrences are significantly larger over the EIA peak region, especially for increasing scintillation levels. Complementary Cumulative Distribution Function (CCDF) curves demonstrate peak probabilities between dip latitudes from − 14.5° to − 10.5° for higher scintillation levels, also displaying an asymmetrical pattern around the EIA boundaries. This study provides important insights on the spatial dynamics of scintillation and fading profiles, enhancing the understanding of low-latitude ionospheric effects on global network satellite system (GNSS) signals.
  • Nenhuma Miniatura disponível
    Item
    Spatial Characteristics of GNSS Fading and Scintillation in Low Latitudes
    (Springer Nature) Santis, Victor Di; Moraes, Alison; Costa Emanoel; Sousasantos, Jonas; Silva, Paulo Renato Pereira; Souza, Ana Lucia Christovam de
    Previous studies evaluated several characteristics of ionospheric fading events and amplitude scintillation. However, a detailed analysis on how the fading profiles and scintillation probabilities vary according to the dip latitude is still required. In this work, a statistical analysis of data from four ground-based scintillation monitors was performed to evaluate how the alpha coefficient (first parameter of the "alpha-mu" probability distribution model); the deepest fading occurrence; the number of fading events per minute; and the duration of fading events change according to the dip latitudes of the ionospheric pierce points (IPPs) of transionospheric propagation paths. The results reveal a nuanced spatial variation in amplitude scintillation, emphasizing an enhanced severity within the equatorial ionization anomaly (EIA) southern crest, resulting in a clear increase in the probability of severe fading events. An increasing trend in the alpha fading coefficient at more poleward dip latitudes was found, in comparison with results from equatorward locations, suggesting an asymmetry favoring more severe fading events within the former region. The average fading occurrences are significantly larger over the EIA peak region, especially for increasing scintillation levels. Complementary Cumulative Distribution Function (CCDF) curves demonstrate peak probabilities between dip latitudes from - 14.5 degrees to - 10.5 degrees for higher scintillation levels, also displaying an asymmetrical pattern around the EIA boundaries. This study provides important insights on the spatial dynamics of scintillation and fading profiles, enhancing the understanding of low-latitude ionospheric effects on global network satellite system (GNSS) signals.

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por