Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Geomagnetic storm"

Agora exibindo 1 - 7 de 7
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Assessing the effects of a minor CIR‐HSS geomagnetic storm on the brazilian low‐latitude ionosphere: ground and space‐based observations
    (Advancing Earth and Space Sciences) Chingarandi, Frank Simbarashe; Cândido, Claudia Maria Nicoli; Guedes, Fabio Becker; Jonah, Olusegun Folarin; Santos, Stella Pires Moraes; Klausner, Virgínia; Osanyin, Taiwo Olusayo
    This paper investigates the effects of a minor G1 Co-rotating Interaction Region (CIR)/High-Speed Stream (HSS)-driven geomagnetic storm that occurred on (13–14 October 2018), during deep solar minimum. We used simultaneous observations from multiple instruments, namely; ground-based Global Navigation Satellite Systems (GNSS) receivers, a Digisonde, ground magnetometers, and space-based observations from the National Aeronautics and Space Administration Global-scale Observations of Limb and Disk (GOLD) and SWARM missions. This study presents a detailed picture of the low-latitude ionosphere response over the Brazilian sector during a minor storm. Our results showed that the minor CIR/HSS-driven storm caused a positive ionospheric storm of over ∼20 TECU in magnitude. For the first time, periodic post-sunset irregularities and Equatorial Plasma Bubbles, equatorial plasma bubbles, were analyzed using GOLD FUV OI 135.6 nm emission, Total Electron Content (TEC) maps, Rate of TEC index, ROTI, and TEC gradients. Fluctuations in the interplanetary magnetic field Bz and changes in the thermospheric column density ratio (∑O/N2) are discussed as the main sources of ionospheric changes during the storm. This paper highlights the importance of monitoring and understanding the impact of Sun-Earth interactions and provides insight into the behavior of the low-latitude ionosphere during minor geomagnetic storms.
  • Carregando...
    Imagem de Miniatura
    Item
    CIR-Driven Geomagnetic Storm and High-Intensity Long-Duration Continuous AE Activity (HILDCAA) Event: Effects on Brazilian Equatorial and Low-Latitude Ionosphere-Observations and Modeling
    (MDPI) Abaidoo, Samuel; Klausner, Virginia; Candido, Claudia Maria Nicoli; Pillat, Valdir Gil; Godoy, Stella Pires de Moraes Santos Ribeiro; Guedes, Fabio Becker; Toledo, Josiely Aparecida do Espirito Santo; Trigo, Laura Luiz
    This paper investigates the effects of a Corotating Interaction Region (CIR)/High-Speed Stream (HSS)-driven geomagnetic storm from 13 to 23 October 2003, preceding the well-known Halloween storm. This moderate storm exhibited a prolonged recovery phase and persistent activity due to a High-Intensity Long-Duration Continuous AE Activity (HILDCAA) event. We focus on low-latitude ionospheric responses induced by Prompt Penetration Electric Fields (PPEFs) and Disturbance Dynamo Electric Fields (DDEFs). To assess these effects, we employed ground-based GNSS receivers, Digisonde data, and satellite observations from ACE, TIMED, and SOHO. An empirical model by Scherliess and Fejer (1999) was used to estimate equatorial plasma drifts and assess disturbed electric fields. Results show a ∼120 km uplift in hmF2 due to PPEF, expanding the Equatorial Ionization Anomaly (EIA) crest beyond 20° dip latitude. DDEF effects during HILDCAA induced sustained F-region oscillations (∼100 km). The storm also altered thermospheric composition, with [[O]/[N2] enhancements coinciding with TEC increases. Plasma irregularities, inferred from the Rate of TEC Index (ROTI 0.5–1 TECU/min), extended from equatorial to South Atlantic Magnetic Anomaly (SAMA) latitudes. These results demonstrate prolonged ionospheric disturbances under CIR/HSS forcing and highlight the relevance of such events for understanding extended storm-time electrodynamics at low latitudes.
  • Carregando...
    Imagem de Miniatura
    Item
    Equatorial Ionization anomaly disturbances (EIA) triggered by the May 2024 solar Coronal Mass Ejection (CME): The strongest geomagnetic superstorm in the last two decades
    (Elsevier) Fagundes, Paulo Roberto; Pillat, Valdir Gil; Habarulema, John Bosco; Muella, Marcio Tadeu de Assis Honorato; Venkatesh, Kavutarapu; Abreu, Alessandro José de; Anoruo, Chukwuma Moses; Vieira, Francisco; Welyargis, Kibrom Hadush; Agyei-Yeboah, Ebenezer; Tardelli, Alexandre; Felix, Gabriela de Sousa; Picanço, Giorgio Arlan da Silva
    Between May 10–15, 2024, a geomagnetic superstorm, the most intense in the past two decades, was recorded. This G5-level super- storm exhibited a Disturbance Storm Time (Dst) index of −412 nT and a Kp index of 9. The sudden storm commencement (SSC) occurred on May 10 at 17:05 UT, followed by the main phase from 18:00 UT on May 10 to 03:00 UT on May 11. The recovery phase lasted from 03:00 UT on May 11 until May 15. During this period, nine X-class solar flares were observed, indicating intense solar activ- ity. The superstorm led to significant ionospheric disturbances, which were analyzed using data from two ionosonde stations and GPS- TEC data from a network across the American sector, covering equatorial to low-mid latitude regions. A negative storm effect was observed in the equatorial region, while a positive ionospheric effect was observed in the low-mid latitudes during the main phase, accom- panied by the uplift of the F-layer to altitudes exceeding 1024 km, driven by storm induced prompt penetration electric fields. Addition- ally, a strong negative storm effect was recorded during the recovery phase on May 11 in daytime, probably due to O/N2 ratio changes.
  • Carregando...
    Imagem de Miniatura
    Item
    Ionospheric GPS-TEC responses from equatorial region to the EIA crest in the South American sector under intense space weather conditions
    (Elsevier) Abreu, Alessandro José de; Correia, Emilia; Denardini, Clezio Marcos; Jesus, Rodolfo de; Venkatesh, Kavutarapu; Roberto, Marisa; Abalde, José Ricardo; Fagundes, Paulo Roberto; Bolzan, Maurício José Alves; Gende, Maurício Alfredo
    We present and discuss the ionospheric F-region observations from equator to the equatorial ionization anomaly (EIA) regions over the South American sector during an intense space weather event occurred between 27 and May 29, 2017. During this geomagnetic storm, the symmetric-H (SYM-H) reached a minimum of − 142 nT at ~0700 UT on May 28, 2017. For this investigation, we analyze the vertical total electron content (VTEC) observations from a chain of nearly 120 Global Positioning System (GPS) stations. Magnetometer measurements obtained at two stations in the low latitude regions are also presented. The observations do not indicate prompt penetration electric field (PPEF) effects in the VTEC variations. Magnetometer’s observations over Cuiaba ´ (CBA) and Cachoeira Paulista (CXP) in central west and south parts of Brazil, respectively, have shown a strong crosscorrelation with SYM-H in the period between 3 and 48 h. The results also show positive ionospheric storm phase during the recovery phase on May 28, 2017. Positive effect during the recovery phase of the geomagnetic storm is possibly associated with effects of disturbances winds. During the recovery phase, a strong intensification of the EIA took place, possibly related to an additional ionization effect. The VTEC values show differences between the west and east sectors. This indicates that the EIA crest is stronger in the east sector than in the west sector, possibly due to the combination of disturbance wind effects and geomagnetic field geometry where in the east sector the field lines are more inclined.
  • Carregando...
    Imagem de Miniatura
    Item
    Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes
    (Elsevier) Fagundes, Paulo Roberto; Tsali-Brown, Vera Yesutor; Pillat, Valdir Gil; Arcanjo, Mateus de Oliveira; Venkatesh, Kavutarapu; Habarulema, John Bosco; Bolzan, Maurício José Alves; Jesusm Rodolfo F. de; Abreu, Alessandro José de; Tardelli, Alexandre; Vieira, Francisco; Denardini, Clezio Marcos
    Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.
  • Carregando...
    Imagem de Miniatura
    Item
    Observation and simulation studies of ionospheric F-region in the South American and Antarctic sectors in the intense geomagnetic storm of August 2018
    (Elsevier) Abreu, Alessandro José de; Correia, Emilia; Jonah, Olusegun Folarin; Venkatesh, Kavutarapu; Thomas, Evan G.; Jesus, Rodolfo F. de; Roberto, Marisa; Abalde, José Ricardo; Fagundes, Paulo Roberto
    In this investigation, we present and discuss the ionospheric F region observations in the equatorial, low-, mid-, and near high-latitude regions in the South American and Antarctic sectors during the intense geomagnetic storm that occurred on 25–27 August 2018. The geomagnetic storm reached a minimum Dst of − 175 nT at ~0700 UT on 26 August. We present the variations of vertical total electron content (VTEC) from a chain of almost 200 GPS stations, covering the South American and Antarctic sectors. A comparison with model simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) is realized. The results ob- tained show that during the main phase of the storm, a southward Bz component of the interplanetary magnetic field (IMF) and an eastward prompt penetration electric field (PPEF) can be observed, but they had no significant impact on the ionospheric plasma. A long recovery phase a predominance of positive phase is observed during daytime. The observations show the effects of an unusual case of multiple PPEF, occurred on 26 August, and effects of thermospheric winds disturbances, occurred on 27 August, resulting in increased VTEC values on both days. The TIE-GCM model reproduces the VTEC increases during the main and recovery phases from mid- latitudes to the equatorial region, but it underestimates the observed values near high-latitudes.
  • Carregando...
    Imagem de Miniatura
    Item
    Study of height-spread sporadic-E layers observed in the South American Magnetic Anomaly
    (Frontiers) Moro, Juliano; Xu, Jiyao; Bageston, Jose Valentin; Silva, Ligia Alves da; Resende, Laysa Cristina Araújo; Nardin, Clezio Marcos de; Andrioli, Vania Fatima; Santos, Angela Machado; Picanco, Giorgio Arlan da Silva; Li, Hui; Zhengkuan, Liu; Wang, Chi; Schuch, Nelson Jorge
    Spread echoes from the E-region observed in ionograms obtained at high latitudes are generally classified as auroral sporadic-E (Esa) layers. These layers have also been detected in nighttime ionograms collected at some ionospheric stations in the South American Magnetic Anomaly (SAMA) region in Brazil during the recovery phases of geomagnetic storms. However, similar echoes have also been observed in the SAMA during geomagnetically quiet periods or daytime, which are not caused by energetic particle precipitation. Therefore, investigating the occurrence of these spread echoes over a longer period, rather than focusing solely on case studies, has become important. Thus, this study aims to analyze the occurrences of spread echoes from the E-region, referred to here for the first time as “Height-Spread Es (HSEs) layers.” The analysis is based on Digisonde data obtained at the Santa Maria station (29.7° S, 53.8° W, ∼22.000 nT) in Brazil over 1 year (2019/2020). The study initially presents examples of these traces on ionograms and then examines their occurrence rates over several time intervals (hours, months, seasons). Among other findings, the statistical analysis reveals that the occurrence rate of HSEs layers is 9.8% during the analyzed period. The HSEs layers appeared predominantly at night and under geomagnetically quiet conditions. Most HSEs layers lasted between 1 h and 3 h 30 min, with a peak incidence during November, December, and January. Finally, the study discusses the most likely mechanisms responsible for HSEs layer formation, considering the geomagnetic conditions and time of their detection on ionograms.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por