Navegando por Assunto "Gravity waves"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Item Characteristics of slant sporadic-E layers observed at low-latitudes(Elsevier) Muka, Peter Taiwo; Muella, Marcio Tadeu de Assis Honorato; Santos, Fredson Conceição; Resende, Laysa Cristina Araújo; Fagundes, Paulo Roberto; Ogunmola, Olufemi Louis; Fontes Neto, Pedro Alves; Pillat, Valdir Gil; Cesar, Mariah; Jesus, Rodolfo deThis study investigates the occurrence, characteristics, and formation mechanisms of slant sporadic-E layers (Ess). The Ess-type layers observed at the Brazilian low-latitude stations of Jata ́ı (17.9°S, 51.7°W) and Sa ̃o Jose ́ dos Campos (23.2°S, 45.8°W), are analyzed using ionosonde data recorded for four months (April, June, September, and December) of 2016. Parameters such as top frequency (ftEs), blanketing frequency (fbEs), and virtual height (h’Es) were scaled from ionograms to characterize the slant (Ess) traces. The results show that Ess-type layers predominantly occur at night, forming between 95 and 120 km altitudes, with monthly and local variations. Model simulations using meteor radar-derived winds revealed that strong and stable zonal wind shear are associated with increased Ess-type layer activity. In addition, wavelet spectral analyses of ftEs and fbEs showed that tidal periodicities (diurnal, semidiurnal, terdiurnal, and quarterdiurnal) and their interactions with gravity waves seem to play fundamental roles in the formation of Ess-type layers. A com- parison of DF (ftEs-fbEs) during Ess-type events confirmed the presence of strong plasma density gradients, supporting the hypothesis that the slanted traces in ionograms result mostly from oblique reflections in inhomogeneous Es layer structures. However, the appearance of slant Es traces may in some cases be related to an actual tilt of the layer. Other relevant aspects of the observations associated with the possible physical mechanisms behind the formation of Ess-type layers at low latitudes are highlighted and discussed.Item Momentum flux characteristics of vertically propagating gravity waves(European Geosciences Union) Nyassor, Prosper Kwamla; Wrasse, Cristiano Max; Paulino, Igo; Yigit, Erdal; Tsali-Brown, Vera Yesutor; Buriti, Ricardo Arlen; Figueiredo, Cosme Alexandre Oliveira Barros; Giongo, Gabriel Augusto; Egito, Fabio; Adebayo, Oluwasegun Micheal; Takahashi, Hisao; Gobbi, DelanoMomentum flux and propagation dynamics of two vertically propagating atmospheric gravity waves (GWs) are studied using observations at São João do Cariri (7.40° S, 36.31° W), Brazil, from co-located pho- tometer, all-sky imager, and meteor radar instruments. Time series of the atomic oxygen green line (OI 557.7 nm), molecular oxygen (O2 (0–1)), sodium D-line (NaD), and hydroxyl (OH (6–2)) airglow intensity variations mea- sured by the photometer were used to investigate the vertical characteristics and vertical phase progression of the GWs with similar (± 10 % of the error margin) or nearly the same (± 5 % of the error margin) period across these emission layers. The horizontal parameters of the same GWs were determined from the OH airglow im- ages, whereas the intrinsic parameters of the horizontal and vertical components of the GWs were estimated with the aid of the observed winds. Using the phase of the GWs at each emission layer, the characteristics of the phase progression exhibited near-vertical propagation under a duct background propagation condition. This indicates that the duct contributes significantly to the observed near-vertical phase propagation. The GW mo- mentum flux and potential energy were estimated using the rotational temperatures of OH and O2, revealing that the time series of momentum fluxes and potential energies are higher in the O2 emission band than in the OH band, indicating a transfer of momentum and energy across OH to the O2 altitude. These results reveal the effect of a duct on vertically propagating GWs and the associated momentum flux and potential energy transfer from the lower to the upper altitudes in the mesosphere.