Navegando por Assunto "ISM: molecules"
Agora exibindo 1 - 4 de 4
Resultados por página
Opções de Ordenação
Item Glycolaldehyde formation mediated by interstellar amorphous ice: a computational study(Royal Astronomical Society) Paiva, Mateus Augusto Martins; Pilling, Sergio; Mendoza, Edgar; Galvão, Breno Rodrigues Lamaghere; Abreu, Heitor Avelino deGlycolaldehyde (HOCH2CHO) is the most straightforward sugar detected in the Interstellar Medium (ISM) and participates in the formation pathways of molecules fundamental to life, red such as ribose and derivatives. Although detected in several regions of the ISM, its formation route is still debated and its abundance cannot be explained only by reactions in the gas phase. This work explores a new gas-phase formation mechanism for glycolaldehyde and compares the energy barrier reduction when the same route happens on the surface of amorphous ices. The first step of the mechanism involves the formation of a carbon–carbon bond between formaldehyde (H2CO) and the formyl radical (HCO), with an energy barrier of 27 kJ mol−1 (gas-phase). The second step consists of barrierless hydrogen addition. Density functional calculations under periodic boundary conditions were applied to study this reaction path on 10 different amorphous ice surfaces through an Eley–Rideal type mechanism. It was found that the energy barrier is reduced on average by 49 per cent, leading in some cases to a 100 per cent reduction. The calculated adsorption energy of glycolaldehyde suggests that it can be promptly desorbed to the gas phase after its formation. This work, thus contributes to explaining the detected relative abundances of glycolaldehyde and opens a new methodological framework for studying the formation routes for Complex Organic Molecules (COMs) in interstellar icy grains.Item Influence of temperature on the chemical evolution and desorption of pure CO ices irradiated by cosmic-rays analogues(Royal Astronomical Society) Pilling, Sergio; Mateus, Marcelo Silva; Ojeda González, Arian; Ferrão, Luiz Fernando de Araujo; Galvão, Breno R. L.; Boduch, Philippe; Rothard, HermannCarbon monoxide (CO) plays a vital role in interstellar chemistry, existing abundantly in both gaseous and frozen environments. Understanding the radiation-driven chemistry of CO-rich ices is crucial for comprehending the formation and desorption of C-bearing molecules in the interstellar medium (ISM), particularly considering the potential impact of temperature on these processes. We report experimental data on irradiation processing of pure CO ice by cosmic ray analogues (95.2 MeV 136Xe23+ ions) at temperatures of 10, 15, and 20 K, in the IGLIAS set-up coupled to the IRRSUD beamline at GANIL (Caen, France). The evolution of the irradiated frozen samples was monitored by infrared spectroscopy. The computational PROCODA code allows us to quantify the chemical evolution of the samples, determining effective reaction rates coefficients (ERCs), molecular abundances at the chemical equilibrium (CE) phase, and desorption processes. The model integrated 18 chemical species – 8 observed (CO, CO2, C3, O3, C2O, C3O, C3O2, and C5O3) and 10 non-observed but predicted (C, O, C2, O2, CO3, C4O, C5O, C2O2, C2O3, C4O2) – linked via 156 reactions. Our findings reveal temperature-driven influences on molecular abundances at chemical equilibrium, desorption yields and rates, and ERC values. Certain reaction routes exhibit distinct thermochemical behaviours of gas- and ice-phase reactions which may be attributed to the presence of neighbouring molecules within the ice matrix. This study provides pivotal insights into the chemical evolution of CO-enriched ice under irradiation, impacting solid-state astrochemistry, clarifying molecular abundances, and advancing our understanding of ISM chemistry and temperature effects on ionized radiation-processed frozen ices.Item Mapping the evolution of pure CO2 ices irradiated by ions, UV, and electrons using the upgraded PROCODA code (employing an effective rate constant ordering by thermochemistry data)(Elsevier) Pilling, Sergio; Rocha, Will Robson Monteiro; Carvalho, Geanderson Araújo; Abreu, Heitor Avelino deChemical reactions and desorption processes are being triggered by incoming ionizing radiation over astrophysical ices in cold space environments. The quantification of these processes is crucial to achieve a detailed understanding of the underlying chemistry occurring within the ice. With this goal, we have upgraded the PROCODA code (Pilling et al. 2022a) which solves a system of coupled differential equations and describes the evolution of the molecular abundances under processing by radiation, now including an effective rate constant (ERCs) ordering by employing thermochemistry data taken from literature. This methodology helps to identify the most important reactions within the reaction network and therefore decreases the degeneracy of the solutions and enhancing the accuracy of the calculations. Here, we described the chemical evolution of four irradiated pure CO2 considering 11 different chemical species, 100 reaction routes and 11 radiation-induced desorption processes. The best-fit models provide the effective rate constants, several desorption parameters, as well as, the characterization of the chemical equilibrium (CE) phase. A comparison with previous code version was given and indicates that the ordering of rate constants by thermochemistry data is more important when more energy is deposited in the ice. The current work present more realistic values for the effective rate constants and a better characterization of the CE phase, such data can be used to refine astrochemical models to better describe cold space environments in the presence of incoming ionizing radiation field such molecular clouds and protoplanetary regions and the surface of comets and frozen moons and planets.Item Simulation of CH3OH ice UV photolysis under laboratory conditions(EDP Sciences) Rocha, Will Robson Monteiro; Woitke, Peter; Pilling, Sergio; Thi, Wing-Fai; Jørgensen, Jes Kristian; Kristensen, Lars Egstrøm; Perotti, Giulia; Kamp, IngaContext. Methanol is the most complex molecule that is securely identified in interstellar ices. It is a key chemical species for understanding chemical complexity in astrophysical environments. Important aspects of the methanol ice photochemistry are still unclear, such as the branching ratios and photodissociation cross sections at different temperatures and irradiation fluxes. Aims. This work aims at a quantitative agreement between laboratory experiments and astrochemical modelling of the CH3OH ice UV photolysis. Ultimately, this work allows us to better understand which processes govern the methanol ice photochemistry present in laboratory experiments. Methods. We used the code ProDiMo to simulate the radiation fields, pressures, and pumping efficiencies characteristic of laboratory measurements. The simulations started with simple chemistry consisting only of methanol ice and helium to mimic the residual gas in the experimental chamber. A surface chemical network enlarged by photodissociation reactions was used to study the chemical reactions within the ice. Additionally, different surface chemistry parameters such as surface competition, tunnelling, thermal diffusion, and reactive desorption were adopted to check those that reproduce the experimental results. Results. The chemical models with the code ProDiMo that include surface chemistry parameters can reproduce the methanol ice destruction via UV photodissociation at temperatures of 20, 30, 50, and 70 K as observed in the experiments. We also note that the results are sensitive to different branching ratios after photolysis and to the mechanisms of reactive desorption. In the simulations of a molecular cloud at 20 K, we observed an increase in the methanol gas abundance of one order of magnitude, with a similar decrease in the solid-phase abundance. Conclusions. Comprehensive astrochemical models provide new insights into laboratory experiments as the quantitative understanding of the processes that govern the reactions within the ice. Ultimately, these insights can help us to better interpret astronomical observations.