Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Navegar
  • English
  • Español
  • Português do Brasil
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Photodynamic therapy"

Agora exibindo 1 - 20 de 20
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Action of Photodynamic Therapy at Low Fluence in 9 L/lacZ Cells after Interaction with Chlorins
    (MDPI) Vitorio, Gabrielle dos Santos; Godoi, Bruno Henrique; Pinto, Juliana Guerra; Ferreira, Isabelle; Pacheco Soares, Cristina; Ferreira-Strixino, Juliana
    Gliosarcoma (GS) is a primary malignant neoplasm of the central nervous system, treated with an unfavorable prognosis with surgery, radiotherapy, and chemotherapy. The treatment for GS consists of surgical resection, almost always accompanied by radiotherapy and/or chemotherapy, given the invasive behavior of the tumor. Photodynamic Therapy (PDT) is studied as an alternative method that combines light, a photosensitizer (PS), and molecular oxygen. This study aimed to compare the effects of PDT using the photosensitizers Fotoenticine (FTC) and Photodithazine (PDZ) at low concentrations and fluences. For this study, 9 L/lacZ cells, concentrations of 1.55 µg mL−1 , 12.5 µg mL−1 , and 50 µg mL−1 of chlorins and fluences of 1, 5, and 10 J/cm2 were used. A test was also carried out with Trypan Blue in L929 cells at the mentioned concentrations at 5 J/cm2 . Both chlorins were internalized in the cytoplasm, with a significant reduction in viability (>95%) in almost all groups and altered cell adhesion and morphology after PDT. HSP70 expression decreased in both PS, while HSP27 increased only in PDT with FTC, and although there was a change in cell adhesion in the 9 L/LacZ lineage it was not observed in the L929 fibroblast lineage. Both chlorins were effective, highlighting the concentration of 50 µg mL−1 at the fluence of 5 J/cm2 ; according to the present study, the PDZ showed better results.
  • Carregando...
    Imagem de Miniatura
    Item
    Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy
    (MDPI) Santos, Amanda Cerquearo Rodrigues dos; Teodoro, Guilherme Rodrigues; Ferreira-Strixino, Juliana; Sant’Anna, Luciana Barros
    Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with aPDT using the PHTALOX® as a photosensitizer (PS) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The groups studied were: C+; L; AM; AM+L; AM+PHTX; and AM+aPDT. The irradiation parameters were 660 nm, 50 J.cm−2, and 30 mW.cm−2. Two independent microbiological experiments were carried out in triplicate, and the results were analyzed by CFU/mL counting and a metabolic activity test, both statistically analyzed (p < 0.05). The integrity of the AM was verified after the treatments by a scanning electron microscope (SEM). The groups AM, AM+PHTX, and, mainly, AM+aPDT showed a statistical difference When compared to C+ regarding the decrease in CFU/mL and metabolic activity. SEM analysis showed significant morphological alterations in the AM+PHTX and AM+aPDT groups. The treatments with AM isolated or associated with PHTALOX® were adequate. The association had potentiated the biofilm effect, and the morphological differences presented by AM after treatment did not hinder its antimicrobial effect, encouraging its use in biofilm formation locals.
  • Carregando...
    Imagem de Miniatura
    Item
    Antimicrobial Photodynamic Therapy Mediated by Fotenticine and Methylene Blue on Planktonic Growth, Biofilms, and Burn Infections of Acinetobacter baumannii
    (MDPI) Figueiredo-Godoi, Lívia Mara Alves; Garcia, Maíra Terra; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Faustino, Eliseu Gabriel; Pedroso, Lara Luise Castro; Junqueira, Juliana Campos
    Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative strategy to control Acinetobacter baumannii infections. In this study, we evaluated the action of aPDT mediated by a new photosensitizer derivative from chlorin e-6 (Fotoenticine—FTC) on A. baumannii, comparing its effects with methylene blue (MB). For this, aPDT was applied on A. baumannii in planktonic growth, biofilms, and burn infections in Galleria mellonella. The absorption of FTC and MB by bacterial cells was also evaluated using microscopic and spectrophotometric analysis. The results of planktonic cultures showed that aPDT reduced the number of viable cells compared to the non-treated group for the reference and multidrug-resistant A. baumannii strains. These reductions varied from 1.4 to 2 log10 CFU for FTC and from 2 log10 CFU to total inhibition for MB. In biofilms, aPDT with MB reduced 3.9 log10 CFU of A. baumannii, whereas FTC had no effect on the cell counts. In G. mellonella, only MB-mediated aPDT had antimicrobial activity on burn injuries, increasing the larvae survival by 35%. Both photosensitizers were internalized by bacterial cells, but MB showed a higher absorption compared to FTC. In conclusion, MB had greater efficacy than FTC as a photosensitizer in aPDT against A. baumannii.
  • Carregando...
    Imagem de Miniatura
    Item
    Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells
    (MDPI) Fontana, Letícia Corrêa; Pinto, Juliana Guerra; Magalhães, Jéssica Aparecida; Tada, Dayane Batista; Almeida, Rainara Moreno Sanches de; Pacheco-Soares, Cristina; Ferreira-Strixino, Juliana
    The treatment and prognosis of cancers of the nervous system remain unfavorable to the patient, which makes it necessary to study alternative therapies as primary or adjuvant treatments to existing methods. Photodynamic Therapy (PDT) is a method that consists of combining a photosensitizer (PS), a light source at the appropriate wavelength, and molecular oxygen, forming reactive oxygen species (ROS), leading to death in the target cell. The objective of this work was to compare the effects of PDT with two chlorins, Photodithazine (PDZ) and Fotoenticine (FTC), in 9L/lacZ gliosarcoma cell lines. Both chlorins, together with an LED device at 660 nm with a fluence of 10 J/cm2 , were included in the study. It was observed that the response to therapy depends on the concentration and type of PS used. In addition, PDZ showed a higher quantum yield of singlet oxygen generation than FTC.
  • Carregando...
    Imagem de Miniatura
    Item
    Effect of serial photodynamic therapy with curcumin on Leishmania braziliensis and Leishmania amazonensis promastigotes
    (CDRR Editors) Maciel, Lucas Tobias Rodrigues; Marcolino, Luciana Maria Cortez; Maciel, Fernanda Bueno Sant’Anna Pereira; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana
    Photodynamic Therapy (PDT) consists of using a light source and a photosensitive drug at an appropriate wavelength and molecular oxygen to trigger cell death through the production of reactive oxygen species. Because it is a localised therapy, PDT is shown to be ideal for skin diseases. American cutaneous Leishmaniasis (ACL) is a highly prevalent protozoan disease worldwide that presents different clinical evolutions and may result in ulcerations and disfiguring lesions on the skin and cartilage. This study was aimed at evaluating the effect in vitro of PDT applied serially using curcumin as a photosensitiser. For this, a concentration of 125 µg.mL-1 of curcumin was used on Leishmania braziliensis and Leishmania amazonensis strains, with a light fluence of 10 J.cm-2 and irradiance of 110 mW.cm-2. The tests done were viability analysis by trypan blue exclusion test, analysis of photosensitizer (PS) internalization by confocal microscopy and morphological alterations by May-Grunwald/Giemsa staining. We observed that there was internalisation of the PS before the first and second application of PDT, with L. braziliensis and L. amazonensis strains mortality of 92% and 82% respectively, after the second application, and induction of alterations in the structural conformation, such as cell size and non-evidence of nucleus and flagellum, demonstrating that PDT was effective. We conclude that serial PDT was effective in inducing the mortality of promastigotes forms of L. braziliensis and L. amazonensis in vitro, thus highlighting its potential for the treatment of leishmaniasis.
  • Nenhuma Miniatura disponível
    Item
    Effects of antimicrobial photodynamic therapy with photodithazine® on methicillin-resistant Staphylococcus aureus (MRSA): Studies in biofilms and experimental model with Galleria mellonella
    (Elsevier) Souza, Beatriz Müller Nunes; Miñán, Alejandro Guillermo; Brambilla, Isabelle Ribeiro; Pinto, Juliana Guerra; Garcia, Maíra Terra; Junqueira, Juliana Campos; Ferreira-Strixino, Juliana
    Staphylococcus aureus infections are a severe health problem due to the high mortality rate. Conventional treatment of these infections is via the administration of antibiotics. However, its indiscriminate use can select resistant microorganisms. Thus, it is necessary to develop alternatives for antibiotic therapy. Antimicrobial Photodynamic Therapy (aPDT), a therapeutic method that associates a photosensitizer (PS), a light source with adequate wavelength to the PS, interacts with molecular oxygen generating reactive oxygen species responsible for cell inactivation, is a viable alternative. This work aimed to analyze, in vitro and in vivo, the action of aPDT with PS Photodithazine® (PDZ) on the methicillin-resistant S. aureus (MRSA) strain. In the in vitro method, the S. aureus biofilm was incubated with PDZ at 50 and 75 μg.mL−1 for 15 min, adopting the light dose of 25, 50, and 100 J/cm2. In addition, PS interaction, formation of reactive oxygen species (ROS), bacterial metabolism, adhesion, bacterial viability, and biofilm structure were evaluated by scanning electron microscopy. Subsequently, the strain was inoculated into models of Galleria mellonella, and the survival curve, health scale, blood cell analysis, and CFU/mL of S. aureus in the hemolymph were analyzed after aPDT. In the in vitro results, bacterial reduction was observed in the different PDZ concentrations, highlighting the parameters of 75 μg.mL−1 of PDZ and 100 J/cm2. As for in vivo results, aPDT increased survival and stimulated the immune system of G. mellonella infected by S. aureus. aPDT proved effective in both models, demonstrating its potential as an alternative therapy in treating MRSA bacterial infections.
  • Carregando...
    Imagem de Miniatura
    Item
    Gelatin nanoparticles via template polymerization for drug delivery system to photoprocess application in cells
    (Taylor & Francis) Trindade, Agnes Cecheto; Castro, Pedro Augusto Rodrigues Ribeiro de; Pinto, Bruna Cristina dos Santos; Ambrósio, Jéssica Aparecida Ribeiro; Oliveira Junior, Benedito Marcio de; Beltrame Junior, Milton; Gonçalves, Erika Peterson; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Simioni, Andreza Ribeiro
    Photodynamic therapy (PDT) is a clinical treatment based on the activation of light-absorbing photosensitizers (PS) to generate reactive oxygen species, which are toxic to the targeted disease cells. Because most PS are hydrophobic with poor water solubility, it is necessary to encapsulate and solubilize PS in aqueous condi- tions to improve the photodynamic action for this compound. In this work, gelatin-poly(acrylic acid) nanoparticles (PAA/gelatin nanoparticles) via template polymerization for incorporation alu- minum chloride phthalocyanine (ClAlPc) as a model drug for PDT application were developed. Biocompatible core-shell polymeric nanoparticles were fabricated via template polymerization using gelatin and acrylic acid as a reaction system. The nanoparticulate system was studied by scanning electron microscopy, steady- state, and their biological activity was evaluated using in vitro cancer cell lines by classical MTT assay. The obtained nanopar- ticles had a spherical shape and DLS particle size were deter- mined further and was found to be around 170nm. The phthalocyanine-loaded-nanoparticles maintained their photophysi- cal behaviour after encapsulation. It is found that ClAlPc can be released from the nanoparticles in a sustained manner with a small initial burst release. In vitro cytotoxicity revealed that ClAlPc- loaded nanoparticles had similar cytotoxicity to free ClAlPc with mouse melanoma cancer cell line (B16-F10). In vitro photoeffects assay indicated that the nanoparticle formulation was superior in anticancer effect to free ClAlPc on mouse melanoma cancer cell line B16-F10. The results indicate that ClAlPc encapsulated in gel- atin-poly(acrylic acid) nanoparticles are a successful delivery sys- tem for improving photodynamic activity in the target tissue.
  • Nenhuma Miniatura disponível
    Item
    Hydroxyapatite microspheres used as a drug delivery system for gliosarcoma strain 9l/Lacz treatment by photodynamic therapy protocols
    (Elsevier) Ambrósio, Jéssica Aparecida Ribeiro; Marmo, Vitor Luca Moura; Gonçalves, Érika Peterson; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Raniero, Leandro José; Beltrame Junior, Milton; Simioni, Andreza Ribeiro
    Background: Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL− 1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. Results: The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 μg.mL− 1 . In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL− 1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 ◦C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. Conclusions: From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy.
  • Carregando...
    Imagem de Miniatura
    Item
    Modulation of heat shock protein expression and cytokine levels in MCF‐7 cells through photodynamic therapy
    (Springer-Verlag London Ltd.) Santos, Mariela Inês Batista dos; Godoi, Bruno Henrique; Silva, Newton Soares da; Oliveira, Luciane Dias de; Ramos, Lucas de Paula; Cintra, Ricardo Cesar; Pacheco‐Soares, Cristina
    In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.
  • Carregando...
    Imagem de Miniatura
    Item
    Molecular effects of photodynamic therapy with curcumin on Leishmania major promastigotes
    (Parasitology Research, Springer-Verlag GmbH Germany) Marcolino, Luciana Maria Cortez; Pinto, Juliana Guerra; Ferreira, Isabelle; Godoi, Bruno Henrique; Canevari, Renata de Azevedo; Ferreira-Strixino, Juliana
    Leishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.
  • Carregando...
    Imagem de Miniatura
    Item
    PCR analysis of the effect of photodynamic therapy on breast tumors
    (CDRR Editors) Ferreira, Isabelle; Silva, Glenda Nicioli da; Ferreira-Strixino, Juliana; Grecco, Clovis; Bagnato, Vanderlei Salvador; Salvadori, Daisy Maria Favero; Pinto, Juliana Guerra; Rocha, Noeme Sousa
    Photodynamic therapy (PDT) is a promising therapeutic modality for treating cancer, including breast tumors. The oxidative damage caused by PDT culminates in cell death, induction of immune response, and the resulting destruction of the tumor. This study aimed to evaluate the gene expression profiling of genes BCL-2, BAX, and HER-2 and their proteins after PDT, associating it with the necrosis caused by this therapy under different fluences. Twenty-eight female rats received a single dose of 7,12-dimethylbenz (a) anthracene (DMBA - 80mg/kg), by gavage, for breast tumor induction. After the tumors grew, the animals were divided into four groups: G1 - control group – untreated breast tumor – and G2, G3, and G4 groups treated with PDT using Photogem@ as photosensitizer and interstitial irradiation, with fluences of 50J/cm, 100J/cm, and 150J/cm, respectively. Samples of tumors were harvested for histological examination by RT-qPCR. The RT-qPCR showed that the gene expression profiling of BCL-2, BAX, and HER-2 was not altered after PDT. Hemorrhagic necrosis and qualitatively greater vascular and cellular damage were observed and correlated positively with the fluence. PDT does not seem to induce the modulation of genes related to apoptosis. The results indicate that the type of cell death stimulated by PDT in breast tumor is necrosis.
  • Nenhuma Miniatura disponível
    Item
    Photodynamic effect of protoporphyrin IX in gliosarcoma 9l/lacZ cell line
    (Elsevier B.V.) Fontana, Letícia Corrêa; Pinto, Juliana Guerra; Vitorio, Gabrielle dos Santos; Ferreira, Isabelle; Pacheco-Soares, Cristina; Mamone, Leandro; Ferreira‐Strixino, Juliana
    Photodynamic Therapy (PDT) is an oncologic treatment, producing reactive oxygen species (ROS) to induce the death of cancer cells. This study aimed to evaluate the action of PDT on gliosarcoma cells, using protoporphyrin IX as PS by incubation with the precursor aminolevulinic acid (ALA). An LED device was used with a light dose of 10 J/cm². The success of the therapy proved to be dependent on the concentration of ALA, and an incubation time of 4 h required for an effective response. Cell death was prevalent due to necrosis when assessed 18 h post-PDT. ALA proved to be an option to PDT in cells of the 9 L/lacZ, with the protocol tested.
  • Nenhuma Miniatura disponível
    Item
    Photodynamic therapy of cationic and anionic BSA-curcumin nanoparticles on amastigotes of Leishmania braziliensis and Leishmania major and Leishmania amazonensis
    (Photodiagnosis and Photodynamic Therapy, Elsevier) Marcolino, Luciana Maria Cortez; Ambrósio, Jéssica Aparecida Ribeiro; Pinto, Juliana Guerra; Ferreira, Isabelle; Simioni, Andreza Ribeiro; Ferreira-Strixino, Juliana
    Cutaneous leishmaniasis is a neglected disease prevalent in tropical countries, and conventional treatment can cause several serious side effects. Photodynamic therapy (PDT) can be considered a promising treatment alternative, as it is non-invasive therapy that has no side effects and uses accessible and low-cost substances, such as curcumin. This study evaluated the PDT response with cationic and anionic BSA nanoparticles encapsulated with curcumin in macrophages infected with L. braziliensis, L. major, and L. amazonensis. The nanoparticle system was characterized using a steady-state technique, scanning electron microscopy (SEM) study, and its biological activity was evaluated using macrophage cell lines infected with different Leishmania species. All spectroscopy measurements demonstrated that BSA curcumin (BSACur) has good photophysical properties, and confocal microscopy shows that macrophages and protozoa internalized the nanoparticles. The viability test demonstrated that at low concentrations, such as 0.1, 0.7, and 1.0 μmol. L 1, there was a decrease in cell viability after PDT application. Furthermore, a decrease in the number of parasites recovered was observed in the PDT groups. The results allowed us to conclude that curcumin loaded into BSA nanoparticles may have potential application in drug delivery systems for PDT protocols, demonstrating reduced cell viability at lower concentrations than free curcumin.
  • Carregando...
    Imagem de Miniatura
    Item
    Susceptibility of Dental Caries Microcosm Biofilms to Photodynamic Therapy Mediated by Fotoenticine
    (MDPI) Garcia, Maíra Terra; Ward, Rafael Araújo da Costa; Gonçalves, Nathália Maria Ferreira; Pedroso, Lara Luise Castro; Silva Neto, José Vieira da; Ferreira-Strixino, Juliana; Junqueira, Juliana Campos
    Photodynamic therapy (PDT) mediated by Fotoenticine® (FTC), a new photosensitizer derived from chlorin e-6, has shown in vitro inhibitory activity against the cariogenic bacterium Streptococcus mutans. However, its antimicrobial effects must be investigated on biofilm models that represent the microbial complexity of caries. Thus, we evaluated the efficacy of FTC-mediated PDT on microcosm biofilms of dental caries. Decayed dentin samples were collected from different patients to form in vitro biofilms. Biofilms were treated with FTC associated with LED irradiation and analyzed by counting the colony forming units (log10 CFU) in selective and non-selective culture media. Furthermore, the biofilm structure and acid production by microorganisms were analyzed using microscopic and spectrophotometric analysis, respectively. The biofilms from different patients showed variations in microbial composition, being formed by streptococci, lactobacilli and yeasts. Altogether, PDT decreased up to 3.7 log10 CFU of total microorganisms, 2.8 log10 CFU of streptococci, 3.2 log10 CFU of lactobacilli and 3.2 log10 CFU of yeasts, and reached eradication of mutans streptococci. PDT was also capable of disaggregating the biofilms and reducing acid concentration in 1.1 to 1.9 mmol lactate/L. It was concluded that FTC was effective in PDT against the heterogeneous biofilms of dental caries.
  • Carregando...
    Imagem de Miniatura
    Item
    Synthesis and characterization of photosensitive gelatin-based hydrogels for photodynamic therapy in HeLa-CCL2 cell line
    (Elsevier) Ambrósio, Jéssica Aparecida Ribeiro; Pinto, Bruna Cristina dos Santos; Marmo, Vitor Luca Moura; Santos, Kennedy Wallace dos; Beltrame Junior, Milton; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Raniero, Leandro José; Simioni, Andreza Ribeiro
    Background: Hydrogel systems are increasingly gaining visibility involving biomedicine, tissue engineering, environmental treatments, and drug delivery systems. These systems have a three-dimensional network composition and high-water absorption capacity, are biocompatible, allowing them to become an option as photosensitizer carriers (PS) for applications in Photodynamic Therapy (PDT) protocols. Methods: A nanohydrogel system (NAHI), encapsulated with chloroaluminium phthalocyanine (ClAlPc) was synthesized for drug delivery.. NAHI was synthesized using gelatin as based polymer by the chemical cross-linking technique. The drug was encapsulated by immersing the hydrogel in a 1.0 mg.mL􀀀 1 ClAlPc solution. The external morphology of NAHI was examined by scanning electron microscopy (SEM). The degree of swelling of the synthesized system was evaluated to determine the water absorption potential. The produced nanohydrogel system was characterized by photochemical, photophysical and photobiologial studies. Results: The images from the SEM analysis showed the presence of three-dimensional networks in the formulation. The swelling test demonstrated that the nanohydrogel freeze-drying process increases its water holding capacity. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the NAHI system. The incorporation efficiency was 70%. The results of trypan blue exclusion test have shown significant reduction (p < 0.05) in the cell viability for all groups treated with PDT, in all concentrations tested. In HeLa cells, PDT mediated by 0,5 mg.mL􀀀 1 ClAlPc encapsulated in NAHI showed a decrease in survival close to 95%. In the internalization cell study was possible to observe the internalization of phthalocyanine after one hour of incubation, at 37 ◦C, with the the accumulation of PS in the cytoplasm and inside the nucleus at both concentrations tested. Conclusions: Given the peculiar performance of the selected system, the resulting nanohydrogel is a versatile platform and display potential applications as controlled delivery systems of photosensitizer for photodynamic therapy application.
  • Carregando...
    Imagem de Miniatura
    Item
    Synthesis, characterization, and evaluation of chloroaluminium phthalocyanine incorporated in poly(ε-caprolactone) nanoparticles for photodynamic therapy
    (Elsevier) Pinto, Bruna Cristina dos Santos; Ambrósio, Jéssica Aparecida Ribeiro; Marmo, Vitor Luca Moura; Pinto, Juliana Guerra; Raniero, Leandro José; Ferreira-Strixino, Juliana; Simioni, Andreza Ribeiro; Beltrame Junior, Milton
    Background: The use of nanotechnology has been widely used in biomedical science, including orthopedic implants, tissue engineering, cancer therapy and drug elution from nanoparticle systems, such as poly-caprolactone (PCL) nanoparticles, which stand out mainly for their biocompatibility, being considered as effective carriers for photosensitizing drugs (PS) in photodynamic therapy (PDT) protocols. Methods: This manuscript describes the synthesis and characterization of PCL nanoparticles for controlled release of the drug chloro-aluminum phthalocyanine (ClAlPc) as a photosensitizer for application in PDT. The PCL-ClAlPc nanoparticles were developed by the nanoprecipitation process. The structure and morphology of the nanoparticles were studied with scanning electron microscopy (SEM) and with Fourier transform infrared (FTIR). The size of nanomaterials was studied using the Dynamic Light Scattering (DLS) method. Photophysical and photochemical characterizations were performed. Subsequently, photobiological studies were also used to characterize the system. Results: The nanoparticles had an average diameter of 384.7 ± 138.6 nm and a polydispersity index of 0.153. SEM analysis revealed that the system formed a spherical shape typical of these delivery systems. Charging efficiency was 82.1% ± 1.2%. The phthalocyanine-loaded PCL nanoparticles maintained their photophysical behavior after encapsulation. Cell viability was determined after the dark toxicity test, and it was possible to observe that there was no evidence of toxicity in the dark, for all concentrations tested. The assay also revealed that adenocarcinoma cells treated with free ClAlPc and in the nanoformulation showed 100% cell death when subjected to PDT protocols. The intracellular location of the photosensitizer indicated a high potential for accumulation in the cytoplasm and nucleus. Conclusions: From the photophysical, photochemical and photobiological analyzes obtained, it was possible to observe that the development of PCL nanoparticles encapsulated with ClAlPc, by the nanoprecipitation method was adequate and that the in vivo release study is efficient to reduce the release rate and attenuate the burst of PS loaded on PCL nanoparticles. The results reinforce that the use of this system as drug delivery systems is useful in PDT protocols.
  • Carregando...
    Imagem de Miniatura
    Item
    Vaterite microparticle-loaded methylene blue for photodynamic activity in macrophages infected with Leishmania braziliensis
    (Springer Nature) Marmo, Vitor Luca Moura; Ambrósio, Jéssica Aparecida Ribeiro; Gonçalves, Érika Peterson; Raniero, Leandro José; Beltrame Junior, Milton; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Simioni, Andreza Ribeiro
    Calcium carbonate (CaCO3) exhibits a variety of crystalline phases, including the anhydrous crystalline polymorphs calcite, aragonite, and vaterite. Developing porous calcium carbonate microparticles in the vaterite phase for the encapsulation of methylene blue (MB) as a photosensitizer (PS) for use in photodynamic therapy (PDT) was the goal of this investigation. Using an adsorption approach, the PS was integrated into the CaCO3 microparticles. The vaterite microparticles were characterized by scanning electron microscopy (SEM) and steady-state techniques. The trypan blue exclusion method was used to measure the biological activity of macrophages infected with Leishmania braziliensis in vitro. The vaterite microparticles produced are highly porous, non-aggregated, and uniform in size. After encapsulation, the MB-loaded microparticles kept their photophysical characteristics. The carriers that were captured allowed for dye localization inside the cells. The results obtained in this study indicated that the MB-loaded vaterite microparticles show promising photodynamic activity in macrophages infected with Leishmania braziliensis.
  • Carregando...
    Imagem de Miniatura
    Item
    Vaterite submicron particles designed for photodynamic therapy in cells
    (Elsevier) Souza, Eliane de Fátima; Ambrósio, Jéssica Aparecida Ribeiro; Pinto, Bruna Cristina dos Santos; Beltrame Junior, Milton; Sakane, Kumiko Koibuchi; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Gonçalves, Érika Peterson; Simioni, Andreza Ribeiro
    Background: Calcium carbonate (CaCO3) is one of the most abundant materials in the world. It has several different crystalline phases as present in the minerals: calcite, aragonite and vaterite, which are anhydrous crystalline polymorphs. Regarding the preparation of these microparticles, the most important aspect is the control of the polymorphism, particle size and material morphology. This study aimed to develop porous microparticles of calcium carbonate in the vaterite phase for the encapsulation of chloro-aluminum phthalocyanine (ClAlPc) as a photosensitizer (PS) for application in Photodynamic Therapy (TFD). Methods: In this study, spherical vaterite composed of microparticles are synthesized by precipitation route assisted by polycarboxylate superplasticizer (PSS). The calcium carbonate was prepared by reacting a mixed solution of Na2CO3 with a CaCl2 solution at an ambient temperature, 25 °C, in the presence of polycarboxylate superplasticizer as a stabilizer. The photosensitizer was incorporated by adsorption technique in the CaCO3 microparticles. The CaCO3 microparticles were studied by scanning electron microscopy, steady-state, and their biological activity was evaluated using in vitro cancer cell lines by trypan blue exclusion method. The intracellular localization of ClAlPc was examined by confocal microscopy. Results: The CaCO3 microparticles obtained are uniform and homogeneously sized, non-aggregated, and highly porous microparticles. The calcium carbonate microparticles show an average size of 3 μm average pore size of about 30–40 nm. The phthalocyanine derivative loaded-microparticles maintained their photophysical behavior after encapsulation. The captured carriers have provided dye localization inside cells. The in vitro experiments with ClAlPc-loaded CaCO3 microparticles showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 3 μmol.L−1 of photosensitizer concentration and 10 J.cm-2 of light. These conditions are sufficient to kill about 80 % of the cells. Conclusions: All the performed physical–chemical, photophysical, and photobiological measurements indicated that the phthalocyanine-loaded CaCO3 microparticles are a promising drug delivery system for photodynamic therapy and photoprocesses.
  • Carregando...
    Imagem de Miniatura
    Item
    Zinc phthalocyanine tetrasulfonate-loaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications
    (Elsevier) Toledo, Maria Cristina Modesto Clementino de; Abreu, Alexandro da Silva; Carvalho, Janicy Arantes; Ambrósio, Jéssica Aparecida Ribeiro; Godoy, Daniele da Silva; Pinto, Bruna Cristina dos Santos; Beltrame Junior, Milton; Simioni, Andreza Ribeiro
    Background: Photodynamic Therapy (PDT) is a modality for the treatment of neoplastic tissues, which is based on the administration of a phototherapeutic agent and light irradiation at an appropriate wavelength, aiming to locate and destroy the target cell with the formation of reactive oxygen species. Nanoencapsulation technology presents itself as a tool for incorporation of bioactive substances aiming to improve their solubility in physiological environment, obtain a longer circulation time in the organism, administration of lower dosages and the minimization of side effects. The present work aimed at the development of poly (lactic acid-glycolic acid) (PLGA) nanoparticles coated with polyelectrolyte film layers for encapsulating zinc phthalocyanine tetrasulfonated (ZnPcSO4) as a bioactive substance model. Methods: PLGA nanoparticles were produced by the double emulsion/solvent evaporation technique and polyelectrolytic coating was performed using polyalkylamine hydrochloride (PAH) as a weak polycation and poly (4- styrene sulfonate) (PSS) as a strong polyanion by layer-by-layer self-assembly technique (known as layer-by-layer-LbL). The nanoparticulate system was studied by scanning electron microscopy, steady-state, and their biological activity was evaluated using in vitro cancer cell lines by classical MTT assay. Results: The polyelectrolytic PLGA nanoparticles had an average diameter of 384.7 ± 138.6 nm, restricted distribution size with a polydispersity index. The obvious change in zeta potential indicates successful alternation in polycation (PAH) and polyanion (PSS) deposition directly in PLGA nanoparticles. Scanning electron microscopy (SEM) analysis showed that the formed system had morphology spherical, typical of these release systems. The loading efficiency was 82.1 % ± 1.2 %. The polyelectrolytic nanoparticles loaded with phthalocyanine maintained their photophysical behavior after encapsulation. Cell viability was determined, obtaining 90 % cell death. Conclusions: Therefore, the presented work depicts ZnPcSO4-loaded polyelectrolytic PLGA nanoparticles as a promise drug delivery system for phototherapeutic agent, which are thus expected to have superior therapeutic efficiency than free drug.
  • Carregando...
    Imagem de Miniatura
    Item
    Zinc pthalocyanine loaded poly (lactic acid) nanoparticles by double emulsion methodology for photodynamic therapy against 9 L/LacZ gliosarcoma cells
    (Taylor & Francis Group) Oliveira Junior, Benedito Marcio de; Teodoro, Jéssica Beatriz Miranda; Ambrósio, Jéssica Aparecida Ribeiro; Gonçalves, Érika Peterson; Beltrame Junior, Milton; Marcolino, Luciana Maria Cortez; Pinto, Juliana Guerra; Ferreira-Strixino, Juliana; Simioni, Andreza Ribeiro
    Development delivery systems, such as nanoparticles, represent a growing area in biomedical research. Nanoparticles (NP) were prepared using a double-emulsion method to load zinc(II) phthalocyanine (ZnPc). NP were obtained using poly (lactic acid) (PLA). ZnPc is a second generation of photosensitizer used in photodynamic therapy (PDT). ZnPc loaded PLA nanoparticles (NPLAZnPc) were prepared by double-emulsion method, characterized and available in cellular culture. The mean nanoparticle size presented particle size was 384.7 ± 84.2 nm with polydispersity index (PDI) of 0.150 ± 0.015, and the encapsulation efficiency was of 83%. The nanoparticle formulations presented negative zeta potential values (27.5 ± 1.0 mV), explaining their colloidal stability. ZnPc loaded nanoparticles maintain its photophysical behavior after encapsulation. Photosensitizer release from nanoparticles was sustained over 168 h with a biphasic ZnPc release profile. An in vitro phototoxic effect in range of 80% was observed in 9 L/ LacZ gliosarcoma cells at laser light doses (10 J cm2) with 3.0 mg mL1 of NPLA-ZnPc. All the physical–chemical, photophysical and photobiological measurements performed allow us to conclude that ZnPc loaded PLGA nanoparticles is a promising drug deliverysystem for PDT.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Desenvolvido por