Navegando por Assunto "Solar activity"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Item Evidence of anti-correlation between sporadic (Es) layers occurrence and solar activity observed at low latitudes over the Brazilian sector(Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Fagundes, Paulo RobertoSporadic E-layers (Es) are thin and denser layers with high ionization observed at about 100–140 km altitude in the E region. Their formation is mainly associated with the tidal components of the diurnal and semidiurnal winds with the convergence of ions driven by the wind shear mechanism. This present work shows evidence of the relationship between the occurrence of Es layers and the solar activity at two observatories located in the Brazilian sector, the near-equatorial site of Palmas (PAL, 10.17 S; 48.33 W; dip lat. 7.31 ) and the low latitude station of Sa ̃o Jose ́ dos Campos (SJC, 23.18 S; 45.89 W; dip lat. 19.35 ). The analysis was performed from Decem- ber/2008 to November/2009 (a period of low solar activity) and from December/2013 to November/2014 (a period of high solar activity) using data collected from two digital ionosondes. Our results show an anti-correlation of the Es layer occurrence concerning the solar activity over both stations studied here. A more clearly observed anti-correlation at the SJC station can be attributed to a greater tidal amplitude at low latitudes. Other relevant aspects of the observations associated with the formation of the Es layers are highlighted and discussed.Item Ionospheric disturbances over the American and African sectors due to the 2019 major Sudden Stratospheric Warming (SSW 2019), under low solar activity conditions(Elsevier) Vieira, Francisco; Fagundes, Paulo Roberto; Pillat, Valdir Gil; Agyei-Yeboah, Ebenezer; Venkatesh, Kavutarapu; Arcanjo, Mateus de OliveiraSudden Stratospheric Warming (SSW) is one of the most spectacular atmospheric large-scale phenomena, which takes place at high latitudes during winter months and is more frequent in the Arctic region than in the Antarctic region. SSWs can change the vertical, latitudinal, and longitudinal distributions of the neutral atmosphere and its dynamics, which in turn affects the ionospheric electrodynamic processes. Simultaneous inferred VTEC from GPS networks over the American and African sectors are used to investigate the ionospheric response due to the SSW 2019 from DOY 356 to DOY 20 (December 22, 2018–January 20, 2019). This study investigates the VTEC and EIA diurnal and day-to-day responses in the American and African sectors during the SSW. It is noted that the VTEC decreased on most of the days at several latitude regions. However, it is also noted that the VTEC increased on some days and in some latitude regions, particularly during the SSW temperature peak. The EIA exhibits significant changes in its shape, intensity, and symmetry during the SSW. This study using simultaneous observations over American and African sectors covering a large geographical extent demonstrates the similarities and differences in ionospheric response to the SSW 2019 event over different regions.