Navegando por Assunto "Wavelet transform"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Item Geomagnetic Disturbances During the Maule (2010) Tsunami Detected by Four Spatiotemporal Methods(Springer Nature Link) Klausner, Virginia; Macedo, Humberto Gimenes; Cezarini, Marina Vedelago; Ojeda-González, Arian; Prestes, Alan; Cândido, Claudia Maria Nicoli; Kherani, Esfhan Alam; Santos, Thiago de AlmeidaSeparating tsunamigenic variations in geomagnetic field measurements in the presence of more dominant magnetic variations by magnetospheric and ionospheric currents is a challenging task. The purpose of this article is to survey the tsunamigenic variations in the vertical component (Z) and the horizontal component (H) of the geomagnetic field using four spatiotemporal methods. Spatiotemporal analysis has shown enormous potential and efficiency in retrieving tsunamigenic contributions from geomagnetic field measurements. We select the Maule (2010) tsunami event on the west coast of Chile and examine the geomagnetic measurements from 13 ground magnetometers scattered in the Pacific Ocean covering a wide area from Chile, crossing the Pacific Ocean to Japan. The tsunamigenic magnetic disturbances are possibly due to two types of contributions, one arising from direct ocean motion and the other from atmospheric motion, both associated with tsunami forcing. Moreover, even though the tsunami waves decrease considerably with increasing epicentral distance, the tsunamigenic contributions are retrieved from a magnetic observatory in Australia ( 13,000 km radial distance from the epicenter). These results suggest that various types of tsunamigenic disturbances can be identified well from the integrated analysis framework presented in this work.Item Lithosphere atmosphere ionosphere coupling during the September 2015 Coquimbo earthquake(Springer Nature Link) Adhikari, Bhoj Raj; Klausner, Virgínia; Cândido, Claudia Maria Nicoli; Poudel, Prakash; Macedo, Humberto Gimenes; Silwal, Ashok; Gautam, Sujan Prasad; Calabia, Andrés; Shah, MunawarThis study explores temporal variations in seismic data, interplanetary parameters, and geomagnetic indices during the 2015 Coquimbo earthquake. We employ wavelet transform techniques to investigate potential coupling mechanisms between the lithosphere, atmosphere, and ionosphere (LAI), even during geomagnetically disturbed periods. Our analysis is strengthened by evaluating geomagnetic data and all- sky images within a 2000–3000 km radius of the epicenter. We explore the post-Chilean earthquake seismogenic perturbations in the upper atmosphere on September 16–17, 2015. Coseismic and post- seismic events emerge in the Brazilian region 1–3 hrs after the earthquake onset. The co-occurrence and subsequent response of these disturbances to seismic events suggest their seismogenic nature. Addi- tionally, we utilize geomagnetic storm and interplanetary magnetic Beld (IMF) indices to differentiate magnetic Cuctuations arising from solar storms during seismic events. While our study detects magnetic disturbances associated with seismic activity, distinguishing them from the eAects of solar storms in the geomagnetic records or all-sky images remains challenging. These observations prompt further investigation into the intricate interplay between geomagnetic and ionospheric disturbances and their connection to seismic and geomagnetic storm activity.