Produção acadêmica-PPGPM
URI Permanente para esta coleção
Navegar
Navegando Produção acadêmica-PPGPM por Assunto "Bioactive glass"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Item Biocomposite macrospheres based on strontium-bioactive glass for application as bone fillers(American Chemical Society) Oliveira, Ivone Regina de; Gonçalves, Isabela dos Santos; Santos, Kennedy Wallace dos; Lança, Maria Carmo; Vieira, Tânia; Silva, Jorge Carvalho; Cengiz, Ibrahim Fatih; Reis, Rui Luís; Oliveira, Joaquim Miguel; Borges, João Paulo Miranda RibeiroTraditional bioactive glass powders are typically composed of irregular particles that can be packed into dense configurations presenting low interconnectivity, which can limit bone ingrowth. The use of novel biocomposite sphere formulations comprising bioactive factors as bone fillers are most advantageous, as it simultaneously allows for packing the particles in a 3-dimensional manner to achieve an adequate interconnected porosity, enhanced biological performance, and ultimately a superior new bone formation. In this work, we develop and characterize novel biocomposite macrospheres of Sr-bioactive glass using sodium alginate, polylactic acid (PLA), and chitosan (CH) as encapsulating materials for finding applications as bone fillers. The biocomposite macrospheres that were obtained using PLA have a larger size distribution and higher porosity and an interconnectivity of 99.7%. Loose apatite particles were observed on the surface of macrospheres prepared with alginate and CH by means of soaking into a simulated body fluid (SBF) for 7 days. A dense apatite layer was formed on the biocomposite macrospheres’ surface produced with PLA, which served to protect PLA from degradation. In vitro investigations demonstrated that biocomposite macrospheres had minimal cytotoxic effects on a human osteosarcoma cell line (SaOS-2 cells). However, the accelerated degradation of PLA due to the degradation of bioactive glass may account for the observed decrease in SaOS-2 cells viability. Among the biocomposite macrospheres, those composed of PLA exhibited the most promising characteristics for their potential use as fillers in bone tissue repair applications.Item Strontium- and bioactive glass-enriched dentin repair cement: Mechanical performance and physicochemical characteristics(Elsevier) Tavella-Silva, Nathalia Cristina; Raucci, Larissa Moreira Spinola Castro; Polizeli, Victor Miguel; Miranda, Carlos Eduardo Saraiva; Oliveira, Ivone Regina de; Raucci Neto, WalterThe aim of this study was to evaluate the effect of strontium (Sr2+) and varying concentrations of bioactive glass (BG) on the physicochemical and mechanical properties of calcium aluminate cement (CAC). The experimental groups included: control (CAC); CAC with 5 wt% BG (CAC5); CAC with 10 wt% BG (CAC10); CAC with 1 wt% Sr2+ (CAC-Sr); CAC5 with 1 wt% Sr2+ (CAC5-Sr); and CAC10 with 1 wt% Sr2+ (CAC10-Sr). Setting time (ST), solubility (SL), pH, electrical conductivity (CON), total dissolved solids (TDS), calcium ion release (Ca2+), radiopacity (RAD), surface roughness (SR), and bond strength (BS) were evaluated using cement discs. ST and RAD were assessed in freshly prepared samples. SL was determined by measuring the weight change of the specimens after seven days of water immersion. pH, CON, TDS, and Ca2+ were quantified in the immersion solutions. SR was measured after 7 and 28 days in water and phosphate-buffered saline (PBS), and BS was evaluated using the push-out test. Data were analyzed using one-way ANOVA and Tukey’s post hoc test (α = 0.05). BG incorporation significantly reduced ST, whereas Sr2+ had no effect. All groups showed mass gain. No significant differences in pH were observed among groups. CAC and CAC5 exhibited higher Ca2+ release than CAC-Sr and CAC5-Sr (p < 0.05). No differences in RAD were found. BS increased with the addition of BG and Sr2+, except in the CAC10-Sr group. Sr2+ enhanced BS in CAC (p < 0.001), but not in CAC5. Failure modes were predominantly mixed and cohesive. In conclusion, BG improved bond strength and reduced setting time, while Sr2+ had no significant effect on the physicochemical properties of the cement.