Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials

dc.contributor.authorPinto, Gabriel Matheus
dc.contributor.authorStaffa, Lucas
dc.contributor.authorHelal, Emna
dc.contributor.authorHahn, Carolina
dc.contributor.authorVieira, Lúcia
dc.contributor.authorRibeiro, Hélio
dc.contributor.authorDavid, Eric
dc.contributor.authorDemarquette, Nicole Raymonde
dc.contributor.authorFechine, Guilhermino José Macêdo
dc.date.accessioned2025-07-08T11:53:15Z
dc.date.available2025-07-08T11:53:15Z
dc.date.issued22025
dc.description.abstractLow electrical conductivity and high heat dissipation are crucial for electronic packaging materials. Additionally, friction is critical for the lifespan and energy efficiency of components. To address these requirements, polymer nanocomposites based on bio-based polyamide 1010 and ultra-low contents of 2D nanomaterials were produced by melt-blending. Graphene oxide, hexago- nal boron nitride, and molybdenum disulfide were selected for their two- dimensional structure and electrical insulation, providing high thermal conductivity while preserving the polymer's dielectric nature. Hybrid nanocomposites were also produced to explore potential synergistic effects. Results showed all compositions maintained the polymer's intrinsic dielectric properties. Although the friction coefficient increased slightly compared with neat polyamide, all nanocomposites remained within the low-friction range required for low-friction materials. Thermal conductivity improved by 5%–10% compared with unfilled polyamide, with hybrid systems performing slightly better, indicating a minor synergistic effect. Despite these enhancements being modest compared with the literature, achieving high thermal conductivity usu- ally requires over 20 wt% of nanofiller, which is detrimental to mechanical per- formance. In this study, at most 0.5 wt% was used, with composites being obtained directly through melt-blending. This highlights their potential as low- content additives for thermal interface materials without compromising other essential properties.
dc.description.physical14 p.
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.uriFAPESP (2020/11496-0, 2021/07858-7) CAPES (88887.310339/2018-00) CNPq (314093/2021-4)
dc.format.mimetypePDF
dc.identifier.affiliationEcole de Technologie Supérieure
dc.identifier.affiliationMackenzie
dc.identifier.affiliationUniversidade Federal de São Carlos
dc.identifier.affiliationUniversidade do Vale do Paraíba
dc.identifier.bibliographicCitationPinto, G. M. et al. Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials. Journal of Applied Polymer Science, v. 142, p. 1-14, 2025. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.56321.
dc.identifier.doi10.1002/app.56321
dc.identifier.urihttps://repositorio.univap.br/handle/123456789/1012
dc.language.isoen_US
dc.publisherWilley
dc.rights.holderWilley
dc.subject.keywordNanomaterials
dc.subject.keywordDielectric properties
dc.subject.keywordFriction
dc.subject.keywordPolymer nanocomposites
dc.subject.keywordThermal conductivity
dc.titleBalancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials
dc.typeArtigos de Periódicos

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials.pdf
Tamanho:
4.19 MB
Formato:
Adobe Portable Document Format
Descrição:
Acesso via Portal Capes
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: