4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Item Expression data of FOS and JUN genes and FTIR spectra provide diagnosis of thyroid carcinoma(Elsevier) Queiroz, João Paulo da Silva; Pupin, Breno; Bhattacharjee, Tanmoy Tapobrata; Uno, Miyuki; Chammas, Roger; Kulcsar, Marco Aurélio Vamondes; Canevari, Renata de AzevedoWe explore the feasibility of using FOS and JUN gene expression and ATR-FTIR for diagnosis of thyroid cancer. For the study, 38 samples (6 non-neoplastic (NN), 10 papillary thyroid carcinoma (PTC), 7 follicular thyroid carcinoma (FTC), and 15 benign tumors (BT) were subjected to RNA extraction followed by quantitative real time PCR (qRT-PCR) and 30 samples (5 NN, 9 PTC, 5 FTC, and 11 BT) were used for Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) followed by multivariate analysis. Of the above, 20 samples were used for both gene expression and ATR-FTIR studies. We found FOS and JUN expression in malignant tumor samples to be significantly lower than NN and benign. ATR-FIR after multivariate analysis could identify the difficult to diagnose FTC with 93 % efficiency. Overall, results suggest the diagnostic potential of molecular biology techniques combined with ATR-FTIR spectroscopy in differentiated thyroid carcinomas (PTC and FTC) and BT.Item Molecular effects of photodynamic therapy with curcumin on Leishmania major promastigotes(Parasitology Research, Springer-Verlag GmbH Germany) Marcolino, Luciana Maria Cortez; Pinto, Juliana Guerra; Ferreira, Isabelle; Godoi, Bruno Henrique; Canevari, Renata de Azevedo; Ferreira-Strixino, JulianaLeishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.Item Amniotic membrane modulates MMP9 and MMP12 gene and protein expression in experimental model of the hepatic fibrosis(Academia Brasileira de Ciências) Alves, Ana Paula da Silva; Teixeira, Roberta Jenniffer Maciel; Silva, Raissa Monteiro da; Canevari, Renata de Azevedo; Sant’Anna, Luciana BarrosHepatic fibrosis is characterized by excessive deposition of collagen in the hepatic parenchyma, which disturbs the normal architecture and function. We have shown that human amniotic membrane (AM) can be used as a patch on the whole liver surface, resulting in an extremely significant reduction in collagen deposition. The aim of this study was to investigate the effects of AM on the matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 12 (MMP12) genes and proteins expression by real time quantitative PCR and immunohistochemistry, respectively, as well as image analysis on biliary fibrosis induced in rats by the bile duct ligation (BDL).Two weeks after the BDL, an AM fragment was applied onto the liver, and four weeks later, the liver samples were collected. MMP9 and MMP12 genes were significantly over expressed in group treated with AM. The immunoexpression of MMP9 and MMP12 was observed in all groups. However, the quantitative image analysis demonstrated an increase of the area occupied only by MMP12 in the livers of AM-treated rats with respect to BDL rats. These findings suggest that the AM exerts its beneficial effects on biliary fibrosis by increasing the MMP12, which in turn reduces the excessive collagen deposition on liver tissue.Item Molecular Markers for Thyroid Cancer Diagnosis: Insights from MAPK Pathway Gene Expression Analysis(MDPI) Pupin, Breno; Diniz, Ramon Varella; Costa, Maricilia Silva; Chagas, Maurilio José; Santos, André Bandiera de Oliveira; Canevari, Renata de AzevedoBackground and Objectives: Thyroid cancer is the prevailing endocrine malignancy, with incidence growing over the last decades in the world. The current diagnostic techniques often yield inconclusive results, emphasizing the need for more effective diagnostic ap- proaches. Molecular profiling emerges as a promising avenue for carcinoma differentiation, offering precise insights to guide patient selection for surgical intervention. This study aimed to identify molecular markers in thyroid cancer through the expression analysis of genes within the MAPK pathway, aiming to enhance the sensitivity and specificity of carcinoma diagnosis. Methods: Through a comparative analysis of malignant and benign thyroid samples, we identified 46 genes of the MAPK pathway that exhibited differential expression by PCR array analysis. Results: Validation through RT-qPCR and in silico analysis using TCGA confirmed significant results for CCNA1, CDKN1C, CREB1, FOS, HSPA5, JUN, MAP2K6, and SFN genes identified in our cohort, reinforcing the relevance of these biomarkers. Specifically, noteworthy are our findings regarding the potential diag- nostic value of CCNA1 and SFN genes in papillary thyroid carcinoma, while the reduced expression of CDKN1C, FOS, and JUN genes in follicular carcinoma suggests their value in distinguishing the thyroid pathologies. Conclusions: This study identifies promising diagnostic markers, namely CCNA1, CDKN1C, FOS, JUN, and SFN genes, which have the potential to enhance clinical decision-making in thyroid cancer.