16 resultados
Resultados de Busca
Agora exibindo 1 - 10 de 16
Item Evidence of anti-correlation between sporadic (Es) layers occurrence and solar activity observed at low latitudes over the Brazilian sector(Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Fagundes, Paulo RobertoSporadic E-layers (Es) are thin and denser layers with high ionization observed at about 100–140 km altitude in the E region. Their formation is mainly associated with the tidal components of the diurnal and semidiurnal winds with the convergence of ions driven by the wind shear mechanism. This present work shows evidence of the relationship between the occurrence of Es layers and the solar activity at two observatories located in the Brazilian sector, the near-equatorial site of Palmas (PAL, 10.17 S; 48.33 W; dip lat. 7.31 ) and the low latitude station of Sa ̃o Jose ́ dos Campos (SJC, 23.18 S; 45.89 W; dip lat. 19.35 ). The analysis was performed from Decem- ber/2008 to November/2009 (a period of low solar activity) and from December/2013 to November/2014 (a period of high solar activity) using data collected from two digital ionosondes. Our results show an anti-correlation of the Es layer occurrence concerning the solar activity over both stations studied here. A more clearly observed anti-correlation at the SJC station can be attributed to a greater tidal amplitude at low latitudes. Other relevant aspects of the observations associated with the formation of the Es layers are highlighted and discussed.Item Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes(Elsevier) Fagundes, Paulo Roberto; Tsali-Brown, Vera Yesutor; Pillat, Valdir Gil; Arcanjo, Mateus de Oliveira; Venkatesh, Kavutarapu; Habarulema, John Bosco; Bolzan, Maurício José Alves; Jesusm Rodolfo F. de; Abreu, Alessandro José de; Tardelli, Alexandre; Vieira, Francisco; Denardini, Clezio MarcosCoronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.Item Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector(European Geosciences Union) Fontes, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Andrioli, Vânia Fátima; Fagundes, Paulo Roberto; Pillat, Valdir Gil; Batista, Paulo Prado; Carrasco, Alexander JoseSporadic E (Es) layers are patches of high ionization observed at around 100–140 km height in the E region. Their formation at low latitudes is primarily associated with the diurnal and semidiurnal components of the tidal winds via the ion convergence driven by the wind shear mechanism. However, recent studies have shown the influence of other tidal modes, such as the terdiurnal tide. Therefore, this work investigates the effect of terdiurnal tide-like oscillations on the occurrence and formation of the Es layers observed over Palmas (10.17∘ S, 48.33∘ W; dip lat. −7.31∘), a low-latitude station in Brazil. The analysis was conducted from December 2008 to November 2009 by using data collected from CADI (Canadian Advanced Digital Ionosonde). Additionally, the E Region Ionospheric Model (MIRE) was used to simulate the terdiurnal tidal component in the Es layer development. The results show modulations of 8 h periods on the occurrence rates of the Es layers during all seasonal periods. In general, we see three well-defined peaks in a superimposed summation of the Es layer types per hour in summer and autumn. We also observed that the amplitude modulation of the terdiurnal tide on the Es occurrence rates minimizes in December in comparison to the other months of the summer season. Other relevant aspects of the observations, with complementary statistical and periodogram analysis, are highlighted and discussed.Item Effects of the Northern Hemisphere sudden stratospheric warmings on the Sporadic-E layers in the Brazilian sector(Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato ; Resende, Laysa Cristina Araújo; Jesus, Rodolfo de; Fagundes, Paulo Roberto; Batista, Paulo Prado; Pillat, Valdir Gil; Tardelli, Alexandre; Andrioli, Vania F.Tidal and Planetary Wave (PWs) amplitudes are strongly influenced by Sudden Stratospheric Warming (SSW) events. A nonlinear interaction between the tidal winds and planetary waves during the SSW may contribute to the intensification of sporadic-E (Es) layers in the lower thermosphere. This work investigated the relationship between SSW events in the Northern Hemisphere and the Es layer occurrence at low latitudes in the Brazilian sector. We used data from digital ionosondes installed in the observatories of Araguatins (ARA, 5.65◦ S; 48.12◦ W; dip lat. − 5.44◦) and S ̃ao Jos ́e dos Campos (SJC, 23.18◦ S; 45.89◦ W; dip lat. − 21.37◦) to analyze the Es layers. Additionally, we used the temperature, zonal wind, and PWs data at high latitudes in the Northern Hemisphere during the major SSW event that occurred in February/2018 and during the events of Dec/2018–Jan/2019 and Dec/2020–Jan/2021. The results showed a maximum frequency peak of 20 MHz (~5 × 106 electrons.cm− 3) at ARA and SJC during these SSW events. The large values of ftEs, fbEs, and electronic densities were observed between 100 and 115 km height in the Esf/l type layers during daytime or nighttime periods. The results also showed that the number of large values of ftEs, fbEs, and electronic density of the Es layer was much higher in ARA than in SJC, in general. The wavelet power spectrum analyses of the ftEs and fbEs showed a periodicity of 2- days before and after the central day of the SSWs events at the station of ARA, with three prominent peaks in the 2018/2019 event. At the SJC station the quasi-2-day periodicity in the wavelet analyses of the ftEs was observed after the central day in all three SSW events, with a peak before the central day during the 2020/2021 event.Item Occurrence of Ionospheric irregularities over Brazil and Africa during the 2019 Antarctic minor sudden stratospheric warming(Elsevier) Agyei-Yeboah, Ebenezer; Fagundes, Paulo Roberto; Tardelli, Alexandre; Pillat, Valdir Gil; Vieira, Francisco; Arcanjo, Mateus de OliveiraThe influence of sudden stratospheric warming (SSW) on the ionosphere and ionospheric irregularities has been studied extensively over the years. However, majority of these investigations have been conducted using warming events originating from the northern hemisphere. Only a few studies have been done on ionospheric variations due to the Antarctic SSW events and to the best of our knowledge, there have not been any studies on southern hemisphere SSW and the occurrence of ionospheric irregularities. In this study, the occurrence of ionospheric irregularities during the 2019 minor Southern hemisphere (SH)/Antarctic SSW is investigated. The event occurs in a relatively calm solar and geomagnetic activity period which makes it possible to identify the effects of SSW on the occurrence of irregularities. Three ionosondes located in different latitudinal regions in Brazil as well as a network of ground-based GPS receiver stations located in both Brazil and Africa were used for this undertaking. Complimentary data from the same ionosonde stations using the same months from 2017 and 2018 were also used. On average more Spread-F was observed in 2019 than in 2017 or 2018 at all stations. ROT observations showed more occurrence in the Brazil sectors followed by West Africa and thenEast Africa. It was observed that the occurrence frequency decreased between 8% and 46 % from the pre-SSW phase to ascending/peak phases and from 2018 to 2019 for the peak phase.Item Statistical analysis on the ionospheric response over South American mid- and near high-latitudes during 70 intense geomagnetic storms occurred in the period of two decades(Elsevier) Abreu, Alessandro José de; Correia, Emilia; Jesus, Rodolfo de; Venkatesh, Kavutarapu; Macho, Eduardo Perez; Roberto, Marisa; Fagundes, Paulo Roberto; Gende, Maurício AlfredoThe first-time statistical response of the positive and negative ionospheric storms phases using Vertical Total Electron Content (VTEC) measurements during 70 geomagnetic storms at near high- and mid-latitudes regions in the Antarctic and Argentine/Chilean sectors in the Southern hemisphere are investigated. The study covers the years between 1999 and 2018 of solar cycles 23 and 24, using the Dst ≤ −100 nT as a criterion for all 70 storms selected. Significant features of solar cycle, seasonal and local time of ionospheric storms are showed. Our results indicate that the occurrence of geomagnetic storms follows a pattern of solar activity dependence, and also indicate a predominance of positive and positive-negative phases during autumn, winter, and spring at mid-latitudes and winter at near high-latitudes. Negative and negative-positive phases occur during all seasons at near high- and mid-latitudes. In addition, positive phases occur more frequently during the daytime while the negative phases occur predominantly in nighttime. There is also a predominance of positive and positive-negative phases simultaneously at near high- and mid-latitudes in the Antarctic and Argentine/Chilean sectors. The percentages of occurrence of positive and positive-negative phases are of 50% and 19%, respectively, at mid-latitude and 60% and 22%, respectively, at near high-latitudes. Negative and negative-positive phases are below 9% at both latitudes.Item Absence of High Frequency Echoes From Ionosondes During the 23–25 April 2023 Geomagnetic Storm; What Happened?(Advancing Earth and Space Sciences) Habarulema, John Bosco; Zhang, Yongliang; Matamba, Tshimangadzo; Lu, Gang; Katamzi‐Joseph, Zama; Fagundes, Paulo Roberto; Okoh, Daniel; Seemala, GopiWe report an unusual event on absence of high frequency (HF) echoes in ionosonde observations from the ionospheric F2 region during the geomagnetic storm of 23–25 April 2023. This event was observed in both southern and northern hemispheres over two stations, Grahamstown (33.3°S, 26.5°E), South Africa and Pruhonice (50.0°N, 14.6°E), Czech Republic. Significant O/N2 depletion over the stations was observed by TIMED/GUVI, indicating a strong negative ionospheric storm. This is unique since absence of echoes in ionosonde measurements is usually due to strong radio absorption in the ionosphere associated with solar flares. However, there was no flare activity during the periods of “absent” F2 HF echoes. On the other hand, the ionosonde detected echoes from E‐layer. TIEGCM simulation reproduced TIMED/GUVI O/N2 depletion and showed that NmE was larger than NmF2 on dayside over Pruhonice. TIMED/GUVI O/N2 also showed a clear spatial gradient in the O/N2 depleted regions, suggesting F‐region ionosphere was tilted. By estimating the critical frequency of the F2 layer using GNSS observations, we have shown that it wasn't possible for the ionospheric electron density to reach depletion levels prohibiting reflection of HF echoes from ionosondes. We suggest that this phenomena may have been caused by either (a) maximum electron density of E layer exceeding that of F2 layer and/or (b) ionospheric tilting which made the signals to be reflected far away from the ionosonde locations.Item Ionospheric GPS-TEC responses from equatorial region to the EIA crest in the South American sector under intense space weather conditions(Elsevier) Abreu, Alessandro José de; Correia, Emilia; Denardini, Clezio Marcos; Jesus, Rodolfo de; Venkatesh, Kavutarapu; Roberto, Marisa; Abalde, José Ricardo; Fagundes, Paulo Roberto; Bolzan, Maurício José Alves; Gende, Maurício AlfredoWe present and discuss the ionospheric F-region observations from equator to the equatorial ionization anomaly (EIA) regions over the South American sector during an intense space weather event occurred between 27 and May 29, 2017. During this geomagnetic storm, the symmetric-H (SYM-H) reached a minimum of − 142 nT at ~0700 UT on May 28, 2017. For this investigation, we analyze the vertical total electron content (VTEC) observations from a chain of nearly 120 Global Positioning System (GPS) stations. Magnetometer measurements obtained at two stations in the low latitude regions are also presented. The observations do not indicate prompt penetration electric field (PPEF) effects in the VTEC variations. Magnetometer’s observations over Cuiaba ´ (CBA) and Cachoeira Paulista (CXP) in central west and south parts of Brazil, respectively, have shown a strong crosscorrelation with SYM-H in the period between 3 and 48 h. The results also show positive ionospheric storm phase during the recovery phase on May 28, 2017. Positive effect during the recovery phase of the geomagnetic storm is possibly associated with effects of disturbances winds. During the recovery phase, a strong intensification of the EIA took place, possibly related to an additional ionization effect. The VTEC values show differences between the west and east sectors. This indicates that the EIA crest is stronger in the east sector than in the west sector, possibly due to the combination of disturbance wind effects and geomagnetic field geometry where in the east sector the field lines are more inclined.Item Longitudinal variations of the occurrence of F3 and F4 layers within the southern EIA and their dependence on solar cycle(Elsevier) Tardelli, Alexandre; Fagundes, Paulo Roberto; Pezzopane, Michael; Pillat, Valdir GilThis investigation presents for the first time the seasonal and solar cycle variations of the daytime F-layer multiple stratifications (F3 and F4 layers) near the southern crest of the EIA in two different longitudinal sectors of South America. To perform the study, the ionograms recorded from 2007 to 2015 at Sao Jose´ dos Campos (23.2 S, 45.9 W), Brazil (eastern sector), and at Tucuma´n (26.9 S, 65.4 W), Argentina (western sector), are considered. Both sites present a frequency of occurrence of the F3 and F4 layers which is directly proportional to the solar activity, and an annual variation with a maximum in spring/summer and a minimum in autumn/winter. The main result that came out from the analysis is that the frequency of occurrence of the F3 and F4 layers is higher in the western sector than in the eastern sector, and this could be attributed to a different gravity waves activity characterizing the two longitudinal sectors. 2021 COSPAR. Published by Elsevier B.V. All rights reserved.Item Ionospheric disturbances over the American and African sectors due to the 2019 major Sudden Stratospheric Warming (SSW 2019), under low solar activity conditions(Elsevier) Vieira, Francisco; Fagundes, Paulo Roberto; Pillat, Valdir Gil; Agyei-Yeboah, Ebenezer; Venkatesh, Kavutarapu; Arcanjo, Mateus de OliveiraSudden Stratospheric Warming (SSW) is one of the most spectacular atmospheric large-scale phenomena, which takes place at high latitudes during winter months and is more frequent in the Arctic region than in the Antarctic region. SSWs can change the vertical, latitudinal, and longitudinal distributions of the neutral atmosphere and its dynamics, which in turn affects the ionospheric electrodynamic processes. Simultaneous inferred VTEC from GPS networks over the American and African sectors are used to investigate the ionospheric response due to the SSW 2019 from DOY 356 to DOY 20 (December 22, 2018–January 20, 2019). This study investigates the VTEC and EIA diurnal and day-to-day responses in the American and African sectors during the SSW. It is noted that the VTEC decreased on most of the days at several latitude regions. However, it is also noted that the VTEC increased on some days and in some latitude regions, particularly during the SSW temperature peak. The EIA exhibits significant changes in its shape, intensity, and symmetry during the SSW. This study using simultaneous observations over American and African sectors covering a large geographical extent demonstrates the similarities and differences in ionospheric response to the SSW 2019 event over different regions.