Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Item
    Oxygen abundances in the narrow line regions of Seyfert galaxies and the metallicity–luminosity relation
    (Royal Astronomical Society) Armah, Mark; Riffel, Rogério; Dors Junior, Oli Luiz; Oh, Kyuseok; Koss, Michael J.; Ricci, Claudio; Trakhtenbrot, Benny; Valerdi, Mabel; Riffel, Rogemar André; Krabbe, Angela Cristina
    We present oxygen abundances relative to hydrogen (O/H) in the narrow line regions (NLRs) gas phases of Seyferts 1 (Sy 1s) and Seyferts 2 (Sy 2s) active galactic nuclei (AGNs). We used fluxes of the optical narrow emission line intensities [Å] of 561 Seyfert nuclei in the local Universe ( z ≲ 0.31) from the second catalogue and data release (DR2) of the BAT AGN Spectroscopic Survey, which focuses on the Swift-BAT hard X-ray (≳ 10 keV) detected AGNs. We derived O/H from relative intensities of the emission lines via the strong-line methods. We find that the AGN O/H abundances are related to their hosts stellar masses and that they follow a downward redshift evolution. The derived O/H together with the hard X-ray luminosity (LX) were used to study the X-ray luminosity–metallicity (LX–ZNLR) relation for the first time in Seyfert galaxies. In contrast to the broad-line focused (LX–ZBLR) studies, we find that the LX–ZNLR exhibit significant anticorrelations with the Eddington ratio (λEdd) and these correlations vary with redshifts. This result indicates that the low-luminous AGNs are more actively undergoing interstellar medium enrichment through star formation in comparison with the more luminous X-ray sources. Our results suggest that the AGN is somehow driving the galaxy chemical enrichment, as a result of the inflow of pristine gas that is diluting the metal rich gas, together with a recent cessation on the circumnuclear star-formation.
  • Item
    Electron temperature fluctuations in Seyfert galaxies
    (Royal Astronomical Society) Riffel, Rogemar André; Dors Júnior, Oli Luiz; Krabbe, Angela Cristina; Esteban, César
    We use Gemini GMOS-IFU observations of three luminous nearby Seyfert galaxies (Mrk 79, Mrk 348, and Mrk 607) to estimate the electron temperature (Te) fluctuations in the inner 0.4–1.1 kpc region of these galaxies. Based on Te determinations throug the [O III]λ5007/λ4363 emission line ratio of each spaxel, temperature variations are quantified by computing the integrated value of the temperature fluctuation parameter (t 2) projected in the plane of the sky t 2 A, for the first time in active galactic nuclei (AGNs). We find t 2 A values of 0.135, 0.039, and 0.015 for Mrk 79, Mrk 348, and Mrk 607, respectively, which are of the same order or larger than the maximum values reported in star-forming regions and planetary nebulae. Taking into account that t 2 A should be considered a lower limit of the total t 2 in the nebular volume, the results suggest that the impact of such fluctuations on chemical abundance determinations can be important in some AGNs.
  • Item
    Chemical abundances in Seyfert galaxies – V. The discovery of shocked emission outside the AGN ionization axis
    (Royal Astronomical Society) Riffel, Rogemar André; Dors Júnior, Oli Luiz; Armah, Mark; Bergmann, Thaisa Storchi; Feltre, Anna; Hägele, Guilhermo Frederico; Cardaci, Mónica Viviana; Dutra, Daniel Ruschel; Krabbe, Angela Cristina; Pérez-Montero, Enrique; Zakamska, Nadia L.; Freitas, Izabel C.
    We present maps for the electron temperature in the inner kpc of three luminous Seyfert galaxies: Mrk 79, Mrk 348, and Mrk 607 obtained from Gemini Multi-Object Spectrograph-integral field unit observations at spatial resolutions of ∼110–280 pc. We study the distributions of electron temperature in active galaxies and find temperatures varying in the range from ∼8000 to > 30000 K. Shocks due to gas outflows play an important role in the observed temperature distributions of Mrk 79 and Mrk 348, while standard photoionization models reproduce the derived temperature values for Mrk 607. In Mrk 79 and Mrk 348, we find direct evidence for shock ionization with overall orientation orthogonal to the ionization axis, where shocks can be easily observed as the active galactic nuclei radiation field is shielded by the nuclear dusty torus. This also indicates that even when the ionization cones are narrow, the shocks can be much wider angle.
  • Item
    Cosmic metallicity evolution of Active Galactic Nuclei: implications for optical diagnostic diagrams
    (Royal Astronomical Society) Dors Junior, Oli Luiz; Cardaci, Mónica Viviana; Hägele, Guilhermo Frederico; Ilha, Gabriele da Silva; Oliveira Junior, Celso Benedito de; Riffel, Rogemar André; Riffel, Rogério; Krabbe, Angela Cristina
    We analyse the validity of optical diagnostic diagrams relying on emission-lines ratios and in the context of classifying Active Galactic Nuclei (AGNs) according to the cosmic metallicity evolution in the redshift range⁠. In this regard, we fit the results of chemical evolution models (CEMs) to the radial gradients of the N/O abundances ratio derived through direct estimates of electron temperatures (Te-method) in a sample of four local spiral galaxies. This approach allows us to select representative CEMs and extrapolate the radial gradients to the nuclear regions of the galaxies in our sample, inferring in this way the central N/O and O/H abundances. The nuclear abundance predictions for theoretical galaxies from the selected CEMs, at distinct evolutionary stages, are used as input parameters in AGN photoionization models built with the Cloudy code. We found that standard BPT diagnostic diagrams are able to classify AGNs with oxygen abundances at redshift. On the other hand, the He iiλ4685/Hβ versus [N ii]λ6584/Hα diagram produces a reliable AGN classification independent of the evolutionary stage of these objects.