Resultados de Busca

Agora exibindo 1 - 6 de 6
  • Item
    Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix
    (Taylor & Francis) Aguiar, Veronica Cristina Pêgo Fiebig; Bezerra, Rayssa do Nascimento; Santos, Kennedy Wallace dos; Gonçalves, Isabela dos Santos; Costa, Karen Julie Santos Grancianinov; Lauda, Diogo Ponte; Campos, Tiago Moreira Bastos; Prado, Renata Falchete do; Vasconcellos, Luana Marotta Reis de; Oliveira, Ivone Regina de
    In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable poly- meric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected mac- ropores, while the hybrid scaffold exhibited a heterogeneous mor- phology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degrada- tion tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total pro- tein production and the formation of mineralization nodules, indi- cating a positive influence on cell culture.
  • Item
    Estudo e otimização da produção de Vidro Bioativo (BG) por fusão
    (2022) Santos, Kennedy Wallace dos; Costa, Karen Julie Santos Grancianinov; Lauda, Diogo Ponte; Oliveira, Ivone Regina de
  • Item
    BG-58S macrospheres produced using BG powder synthesized by alkali-mediated sol–gel process and different phosphorus precursor
    (Springer Nature Link) Grancianinov, Karen Julie Santos; Santos, Kennedy dos; Gonçalves, Isabela; Donda, Giovanni Moreira; Lauda, Diogo Ponte; Amaral, Suelen; Souza, Amanda; Vasconcellos, Luana de; Oliveira, Ivone Regina de
    Purpose Bioactive glass (BG) spheres with uniform shape and specific size variation are allowed to be packed into a 3D arrangement, which results in an open porosity that improves bone growth. Methods BG-58S macrospheres were produced using BG powder synthesized by alkali-mediated sol–gel process and different phosphorus precursors (TEP or phosphoric acid-AF). Macrospheres (MAF-1 M, MAF-2 M, MTEP-1 M, and MTEP-2 M) were characterized as to surface morphology and size, theoretical density, and specific surface area/pore size distribution. In vitro bioactivity was evaluated in simulated body fluid (SBF). In vitro tests were conducted (for MAF-2 M and MTEP-2 M) as cell viability, total protein content, determination of alkaline phosphatase, cell adhesion by means of SEM, and mineralization nodules formation compared to commercial product (BG-45S5). Biological performance was verified through histological and histomorphometric analyses around the samples: BG-45S5, MTEP-2 M, and control (clot). Results All physicochemical characterizations demonstrated favorable macrospheres for application in bone grafting. MTEP-2 M and MAF-2 M showed higher cell viability and total protein content when compared to BG-45S5 with a statisti- cal difference (p < 0.05); however, no statistical difference was detected among the groups regarding the determination of alkaline phosphatase (p > 0.05). Cells adhered to the surface were observed for all samples as well as nodules of minerali- zation. The results referring to in vivo biological assays showed no statistical difference between the experimental groups MTEP-2 M, BV45S5, and clot control in the two periods evaluated (p > 0.05). Conclusion The method used in this study was able to prepare macrosphere bioglass, and this material seems to be a promis- ing biomaterial to improve bone tissue regeneration.
  • Item
    Síntese e Caracterização de Vidro Bioativo (BG-58S) pela Rota Sol-Gel sem e com a Presença de Solvente e Agente Porogênico
    (2023) Aguiar, Veronica Cristina Pêgo Fiebig; Gonçalves, Isabela dos Santos; Ortega, Fernando dos Santos; Grancianinov, Karen Julie Santos; Lauda, Diogo Ponte; Oliveira, Ivone Regina de
  • Item
    Síntese e caracterização de vidro bioativo (BG-58S) pela rota sol-gel sem e com a presença de solvente e agente porogênico
    (2023-12-05) Aguiar, Veronica Cristina Pêgo Fiebig; Gonçalves, Isabela dos Santos; Ortega, Fernando dos Santos; Costa, Karen Julie Santos Grancianinov; Lauda, Diogo Ponte; Oliveira, Ivone Regina de
  • Item
    Estudo e otimização da produção de vidro bioativo (BG) por fusão
    (2022) Santos, Kennedy Wallace dos; Costa, Karen Julie Santos Grancianinov; Lauda, Diogo Ponte