6 resultados
Resultados de Busca
Agora exibindo 1 - 6 de 6
Item Scratch and wear behaviour of Co-Cr-Mo alloy in ringer’s lactate solution(MDPI) Silva, Raimundo; Santos, Marcos Dantas dos; Madureira, Rui; Soares, Rui; Neto, Rui; Vieira, Angela Aparecida; Gonçalves, Polyana Alves Radi; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Vieira, Lúcia; Viana, FilomenaCobalt–chromium–molybdenum (Co-Cr-Mo) alloy is a material recommended for biomedical implants; however, to be suitable for this application, it should have good tribological properties, which are related to grain size. This paper investigates the tribological behaviour of a Co-Cr-Mo alloy produced using investment casting, together with electromagnetic stirring, to reduce its grain size. The samples were subjected to wear and scratch tests in simulated body fluid (Ringer’s lactate solution). Since a reduction in grain size can influence the behaviour of the material, in terms of resistance and tribological response, four samples with different grain sizes were produced for use in our investigation of the behaviour of the alloy, in which we considered the friction coefficient, wear, and scratch resistance. The experiments were performed using a tribometer, with mean values for the friction coefficient, normal load, and tangential force acquired and recorded by the software. Spheres of Ti-6Al-4V and 316L steel were used as counterface materials. In addition, to elucidate the influence of grain size on the mechanical properties of the alloy, observations were conducted via scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD). The results showed changes in the structure, with a reduction in grain size from 5.51 to 0.79 mm. Using both spheres, the best results for the friction coefficient and wear volume corresponded to the sample with the smallest grain size of 0.79 mm. The friction coefficients obtained were 0.37 and 0.45, using the Ti-6Al-4V and 316L spheres, respectively. These results confirm that the best surface finish for Co-Cr-Mo alloy used as a biomedical implant is one with a smaller grain size, since this results in a lower friction coefficient and low wear.Item Estudo da eficiência de nanocarreador de anfotericina B frente a Criptococcus neoformans(2022) Silva, Aline Cristiane de Oliveira; Gonçalves, Érika Peterson; Gouvea, Thainara; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Morais, Flavia Villaça; Ambrósio, Jéssica Aparecida RibeiroItem Wear Rate, Tribo-Corrosion, and Plastic Deformation Values of Co-Cr-Mo Alloy in Ringer Lactate Solution(MDPI) Silva, Raimundo Nonato Alves; Neto, Rui; Vieira, Angela Aparecida; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Radi, Polyana Alves; Silveira, Carolina Hahn da; Santos, Marcos Dantas dos; Viana, Filomena; Vieira, LúciaThis study investigates the tribocorrosion performance of a cast Co-Cr-Mo alloy prepared using casting and electromagnetic stirring (EMS) at specific frequencies. The tribocorrosion behaviour of the alloy was evaluated when exposed to Ringer’s lactate solution to optimize the EMS parameters and improve its properties. The research focuses on biomedical implant applications and explores how EMS affects alloy wear and corrosion resistance. As did the friction coefficient and wear volume, the wear rate of samples produced with EMS frequencies of 75 Hz and 150 Hz decreased. These improvements are attributed to the ability of EMS to refine grain size and homogenize the microstructure, thereby increasing the resistance to tribocorrosion. Techniques such as scanning electron microscopy (SEM) and profilometry were used for surface and wear analysis, while mechanical properties were evaluated through instrumented indentation tests. The findings confirm that EMS improves the alloy’s durability and tribocorrosion resistance, making it highly suitable for demanding biomedical applications such as joint replacements. This highlights the importance of advanced manufacturing techniques in optimizing biomedical alloys for simulated body conditions.Item Estudo da eficiência de nanocarreador de anfotericina B frente a Criptococcus neoformans(2022) Silva, Aline Cristiane de Oliveira; Gonçalves, Érika Peterson; Gouvea, Thainara; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Morais, Flavia Villaça; Ambrósio, Jéssica Aparecida RibeiroItem Tribocorrosion studies on DLC films with silver nanoparticles for prosthesis applications(IOP Publishing) Radi, Polyana Alves; Vieira, Lúcia; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Trava-Airoldi, Vladimir Jesus; Massi, Marcos; Reis, Danieli Aparecida PereiraMetals and their alloys are very important for orthopedic applications, and the basic requirements for a successful implant are chemical stability, mechanical behavior, and biocompatibility in body fluids and tissues. For prosthesis applications, the corrosion resistance of metals is one of the major prerequisites to avoid impairment of the material properties due to degradation. The combined action of corrosion and wear on the material is called tribocorrosion and DLC (Diamond-Like Carbon) films have been extensively studied to increase prosthesis biocompatibility and to protect from corrosion. Additionally, DLC coatings can prevent the prosthesis to release toxic elements due to plastic deformation and corrosion. This paper is about tribocorrosion studies on DLC and DLC-Ag (DLC containing silver nanoparticles) on Ti-6Al-4V substrates. These films were obtained by PECVD (Plasma Enhanced Chemical Vapor Deposition) using hexane as a precursor. The tribocorrosion behavior of uncoated and coated samples was investigated in the reciprocating mode in Ringer's lactate solution. From the polarization test results, the protective efficiency of the film was calculated. Silver nanoparticles improved the corrosion resistance of the films. The protective efficiency was 15 and 19% for DLC and DLC-Ag films, respectively.Item Calcium Aluminate Cement Blends Containing Bioactive Glass and Strontium for Biomaterial Applications(SciELO) Barbosa, Ana Margarida; Santos, Kennedy Wallace dos; Gonçalves, Irene S.; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Martorano, Antonio Secco; Grisote, Gabriela; Raucci, Larissa Moreira Spinola de Castro; Oliveira, Paulo Tambasco de; Raniero, Leandro José; Oliveira, Ivone Regina deIn this work blends based on calcium aluminate cement (CAC) containing bioactive glass (BG) (5, 7.5 and 10 wt%) and strontium oxide (1 wt%) were produced aiming improve their bioactivity and the capacity to stimulate the bone regeneration. In the first part, the blends containing only BG were characterized as theoretical density, microhardness, uniaxial cold crush strength after SBF and apparent porosity and pore size distribution before and after SBF treatment. In the second part, bioactivity and cell culture tests were also conducted in the blends containing BG and strontium oxide. The addition of 7.5 wt% of BG in homogeneous calcium aluminate cement (CH) improved its mechanical properties as microhardness and uniaxial cold crushing strength. The blends were more bioactive due to the presence of a highly soluble amorphous phase as confirmed by means of SEM/EDX mainly for 7.5 wt% BG without and with Sr from 1 day in SBF. FTIR analyses indicated the formation the apatite-like phase by means of increase of intensity of the PO43- peaks after SBF treatment. All blends allowed the development of the osteoblastic phenotype and the formation of mineralized matrix increased due to the inclusion of BG and Sr promoting the osteogenesis process.