Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Item
    Deuteration of molecular clumps induced by cosmic rays
    (Elsevier) Pilling, Sergio; Pazianotto, Maurício Tizziani; Molina, Jose Manuel Quesada
    The D/H ratio in astrophysical environments has instigated the scientists for at least 50 years. The wide range of values in the interstellar medium (ISM) from 10e to 7 to 10e-1 have usually been claimed to be due to small zero-point energy differences between reactants and products involving D and H (mainly at low temperatures). Here, we present a new source of deuteration processes in the ISM clouds as a result of cosmic ray irradiation. As a study object, we consider a typical molecular clump under the presence of incoming cosmic rays simulated computationally. The calculations were performed employing the Monte Carlo toolkit GEANT4 code (considering hadronic physics) and considering mainly the proton and alpha component of the incoming cosmic rays from the ISM (the dominant ones for the production of secondary protons and deuterons). The results suggest an increasing D/H ratio as function of time in the central part of molecular clumps (<200 AU) with the largest deuteration in the central region of the cloud, and a bump in the D/H ratio around 2–10 AU (which becomes more pronounced for clouds with larger timescales; > 10 Myrs). The results also show that for timescales between 10 and 100 Myrs the central part of the cloud has D/H around 6-16e-3, a value compatible with the observed D/H in some interstellar clouds. This work adds a new piece to the D/H puzzle of the ISM and might also help to explain the D/H ratio measured in different objects inside the Solar system.
  • Item
    Energy Deposition by Cosmic Rays in the Molecular Cloud Using GEANT4 Code and Voyager I Data
    (IOP science) Pazianotto, Maurício Tizziani; Pilling, Sergio; Molina, Jose Manuel Quesada; Federico, Claudio Antonio
    Molecular clouds (MCs) are exposed to Galactic and extragalactic cosmic rays (CR) that trigger several physical and physicochemical changes, including gas and grain heating and molecular destruction and formation. Here we present a theoretical model describing the energy delivered by CRs, composed of protons, alphas, and electrons taken from Voyager I measurements, into a typical MC with 5400 M☉ (composed mainly of H with a density law of r −1.2) and size around 1 × 106 au. The calculation was performed employing the Monte Carlo toolkit GEANT4 to obtain the energy deposition per mass from several types of secondary particles (considering nuclear and hadron physics). The results indicate that incoming protons contribute to most of the energy delivered in the MC in all regions (maximum ∼230 MeV g−1 s −1 at outer regions of the cloud). Secondary electrons are the second most important component for energy deposition in almost all layers of the MC and can deliver an energy rate of ∼130 MeV g−1 s −1 in the outer region of the MC. Other cascade particles have their major energy delivery in the central and denser core of the MC. From a temperature model (considering CR data from Voyager I), we observed (i) a small bump in temperature at the distance of 3 × 103 –2 × 104 au from the center, (ii) a rapid temperature decrease (roughly 7 K) between the outer layer and the second most outer layer, and (iii) that, at a distance of 5 × 104 au (Av > 10), the gas temperature of the MC is below 15 K.