Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Item
    Chemical abundances in Seyfert galaxies – IX. Helium abundance estimates
    (Royal Astronomical Society) Dors Junior, Oli Luiz; Valerdi, Mabel; Lemes, Priscila Freitas; Krabbe, Angela Cristina; Riffel, Rogemar André; Amôres, Eduardo Brescansin; Riffel, Rogério; Armah, Mark; Monteiro, Adriano Francisco; Oliveira Junior, Celso Benedito de
    For the first time, the helium abundance relative to hydrogen (He/H), which relied on direct measurements of the electron temperature, has been derived in the narrow line regions (NLRs) from a local sample of Seyfert 2 nuclei. In view of this, optical emission line intensities [3000 < λ(Å) < 7000] of 65 local Seyfert 2 nuclei (z < 0.2), taken from Sloan Digital Sky Survey Data Release 15 and additional compilation from the literature, were considered. We used photoionization model grid to derive an Ionization Correction Factor (ICF) for the neutral helium. The application of this ICF indicates that the NLRs of Seyfert 2 present a neutral helium fraction of ∼50 per cent in relation to the total helium abundance. We find that Seyfert 2 nuclei present helium abundance ranging from 0.60 to 2.50 times the solar value, while ∼85 per cent of the sample present oversolar abundance values. The derived (He/H)–(O/H) abundance relation from the Seyfert 2 is stepper than that of star-forming regions (SFs) and this difference could be due to excess of helium injected into the interstellar medium by the winds of Wolf–Rayet stars. From a regression to zero metallicity, by using Seyfert 2 estimates combined with SFs estimates, we obtained a primordial helium mass fraction Yp = 0.2441 ± 0.0037, a value in good agreement with the one inferred from the temperature fluctuations of the cosmic microwave background by the Planck Collaboration
  • Item
    Cosmic metallicity evolution of Active Galactic Nuclei: implications for optical diagnostic diagrams
    (Royal Astronomical Society) Dors Junior, Oli Luiz; Cardaci, Mónica Viviana; Hägele, Guilhermo Frederico; Ilha, Gabriele da Silva; Oliveira Junior, Celso Benedito de; Riffel, Rogemar André; Riffel, Rogério; Krabbe, Angela Cristina
    We analyse the validity of optical diagnostic diagrams relying on emission-lines ratios and in the context of classifying Active Galactic Nuclei (AGNs) according to the cosmic metallicity evolution in the redshift range⁠. In this regard, we fit the results of chemical evolution models (CEMs) to the radial gradients of the N/O abundances ratio derived through direct estimates of electron temperatures (Te-method) in a sample of four local spiral galaxies. This approach allows us to select representative CEMs and extrapolate the radial gradients to the nuclear regions of the galaxies in our sample, inferring in this way the central N/O and O/H abundances. The nuclear abundance predictions for theoretical galaxies from the selected CEMs, at distinct evolutionary stages, are used as input parameters in AGN photoionization models built with the Cloudy code. We found that standard BPT diagnostic diagrams are able to classify AGNs with oxygen abundances at redshift. On the other hand, the He iiλ4685/Hβ versus [N ii]λ6584/Hα diagram produces a reliable AGN classification independent of the evolutionary stage of these objects.