2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Item Calcium Aluminate Cement Blends Containing Bioactive Glass and Strontium for Biomaterial Applications(SciELO) Barbosa, Ana Margarida; Santos, Kennedy Wallace dos; Gonçalves, Irene S.; Leite, Priscila Maria Sarmeiro Corrêa Marciano; Martorano, Antonio Secco; Grisote, Gabriela; Raucci, Larissa Moreira Spinola de Castro; Oliveira, Paulo Tambasco de; Raniero, Leandro José; Oliveira, Ivone Regina deIn this work blends based on calcium aluminate cement (CAC) containing bioactive glass (BG) (5, 7.5 and 10 wt%) and strontium oxide (1 wt%) were produced aiming improve their bioactivity and the capacity to stimulate the bone regeneration. In the first part, the blends containing only BG were characterized as theoretical density, microhardness, uniaxial cold crush strength after SBF and apparent porosity and pore size distribution before and after SBF treatment. In the second part, bioactivity and cell culture tests were also conducted in the blends containing BG and strontium oxide. The addition of 7.5 wt% of BG in homogeneous calcium aluminate cement (CH) improved its mechanical properties as microhardness and uniaxial cold crushing strength. The blends were more bioactive due to the presence of a highly soluble amorphous phase as confirmed by means of SEM/EDX mainly for 7.5 wt% BG without and with Sr from 1 day in SBF. FTIR analyses indicated the formation the apatite-like phase by means of increase of intensity of the PO43- peaks after SBF treatment. All blends allowed the development of the osteoblastic phenotype and the formation of mineralized matrix increased due to the inclusion of BG and Sr promoting the osteogenesis process.Item Effects of blood and root-dentin cleaning on the porosity and bond strength of a collagen bioceramic material(Fundação Odontológica de Ribeirão Preto) Saltareli, Fernanda Mara; Raucci, Larissa Moreira Spinola de Castro; Miranda, Carlos Eduardo Saraiva; Silva, Nathalia Cristina Tavella; Oliveira, Ivone Regina de; Raucci Neto, WalterTo assess the effect of cleaning protocols on dentin contaminated with blood in reparative endodontic materials, bovine root samples were divided: no contamination (N); contamination (P); contamination and cleaning with saline (S), 2.5% NaOCl+saline (Na) or 2.5% NaOCl+17% EDTA+saline (NaE) and filled with: mineral trioxide aggregate (MTA), calcium-aluminate-cement (C), or C+collagen (Ccol) (n=13). The samples were evaluated for porosity, chemical composition, and bond strength. MTA porosity was lower than C (p=0.02) and higher than Ccol (p<0.001). P and NaE were similar (p=1.00), but higher than the other groups (p<0.001). MTA bond strength was similar to Ccol (p=0.777) and lower than C (p=0.028). P presented lower bond strength than the N (p<0.001); S and Na were similar to each other (p=0.969), but higher than P and lower than N (p<0.001). It was observed a predominance of mixed and cohesive failures. None of the samples showed Ca/P ratio values similar to human hydroxyapatite. This study showed that contamination with blood increased the materials porosity, but dentin cleaning with 2.5% NaOCl reduced this effect, and the collagen additive reduced the material porosity. Furthermore, blood contamination reduced the materials bond strength, and cleaning with saline or 2.5% NaOCl diminished this effect.