2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Item Gold nanoparticles conjugated with epidermal growth factor and gadolinium for precision delivery of contrast agents in magnetic resonance imaging(Springer-Verlag London Ltd.) Queiroz, Marinho de; Veriato, Thaís da Silva; Raniero, Leandro José; Castilho, Maiara LimaThe utilization of contrast agents in magnetic resonance imaging (MRI) has become increasingly important in clinical diagnosis. However, the low diagnostic specificity of this technique is a limiting factor for the early detection of tumors. To develop a new contrast agent with a specific target for early stage tumors, we present the synthesis and characterization of a nanocontrast composed of gold nanoparticles (AuNPs), gadopentetic acid (Gd-DTPA), and epidermal growth factor (EGF). Carbodiimide-based chemistry was utilized to modify Gd-DTPA for functionalization with AuNPs. This resulted in the formation of the Au@Gd-EGF nanocontrast. The relaxation rate (1/T1) of the nanocontrast was analyzed using MRI, and cytotoxicity was determined based on cell viability and mitochondrial activity in a human breast adenocarcinoma cell line. Fourier-transform infrared spectroscopy analysis confirmed the effectiveness of carbodiimide in the formation of the Gd-DTPA-cysteamine complex in the presence of bands at 930, 1042, 1232, 1588, and 1716 cm-1. The complexes exhibited good interactions with the AuNPs. However, the signal intensity of the Au@Gd-EGF nanocontrast was lower than that of the commercial contrast agent because the r1/r2 relaxivities of the Gd-DTPA-based contrast agents were lower than those of the gadoversetamide-based molecules. The Au@Gd-EGF nanocontrast agent exhibited good biocompatibility, low cytotoxicity, and high signal intensity in MRI with active targeted delivery, suggesting significant potential for future applications in the early diagnosis of tumors.Item Antibacterial activity of silver nanoparticles functionalized with amikacin applied against multidrug-resistant acinetobacter baumannii(Elsevier) Camargo, Larissa de Oliveira; Fontoura, Inglid; Veriato, Thaís da Silva; Raniero, Leandro José; Castilho, Maiara LimaBackground: Multidrug-resistant bacteria are one of the world's biggest health problems; therefore, improving the spectrum of action of antibiotics could be necessary to reverse this situation. Amikacin and silver salts have well-known antimicrobial properties. However, both drugs lost their effectiveness against some bacteria, such as Acinetobacter baumannii. This work aims to develop a nanodrug from silver nanoparticles (AgNPs) functionalized with Amikacin against multidrug-resistant Acinetobacter baumannii. Methods: AgNPs were produced using the bottom-up methodology and functionalized with Amikacin modified by the carbodiimide-based chemistry, forming AgNPs@Amikacin. Susceptibility tests were performed using Amikacin-resistant Acinetobacter baumannii strains to assess the bacteriostatic and bactericidal potential of the developed nanodrug. The clinical strains were induced to form a biofilm, and biomass quantification and the metabolic activity were determined. Results: The AgNPs have a hydrodynamic diameter of the particles with a bimodal distribution, with a size of 37.84 nm. The FT-IR spectrum of AgNPs@Amikacin exhibits vibrational modes corresponding to Amikacin, confirming the conjugation to AgNPs. Susceptibility testing demonstrated a minimal inhibitory and bactericidal concentration of < 0.5 µg/mL. The AgNPs@Amikacin reduced the biofilm metabolic activity of Acinetobacter baumannii at rates ≥ 50%, characterized by the minimal biofilm inhibition concentrations. Conclusions: Results demonstrate a promising development of a new nanodrug with lower concentrations, less toxicity, and greater efficacy against multidrug-resistant Acinetobacter baumannii.