3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche

dc.contributor.authorMachado, Lucas Simões
dc.contributor.authorFerreira, Paula Scanavez
dc.contributor.authorPires, Marina Rodrigues
dc.contributor.authorBim, Larissa Valdemarin
dc.contributor.authorOliveira, Natália Heloísa de
dc.contributor.authorSalles, Geisa Rodrigues
dc.contributor.authorFerreira, Natalia Dall'Agnol
dc.contributor.authorCruz, Elisa Marozzi
dc.contributor.authorPorcionatto, Marimelia Aparecida
dc.date.accessioned2026-02-13T18:35:26Z
dc.date.available2026-02-13T18:35:26Z
dc.date.issued22025-09-09
dc.description.abstractAnimal models, especially rodents, used to study neurodevelopment have significantly advanced our comprehension of cellular and molecular mechanisms. Nevertheless, differences in species-specific structures, gestation periods, and interneuronal connections limit animal models’ ability to represent human neurodevelopment accurately. The unique characteristics of primate neural progenitor cells (NPCs) enable cortex expansion with gyrus formation, which does not occur in lissencephalic animals, like rodents. Therefore, there is a need for novel in vitro models using human cells that recapitulate the complexity of human brain development. Along with organoids, 3D bioprinting offers a platform for creating more complex in vitro models. We developed, extensively characterized, and successfully used a GeltrexTM/GelMA hydrogel blend to bioprint human induced pluripotent stem cells-derived NPCs (hNPCs). We show that 3D bioprinted hNPCs can selforganize, revealing key features of a neurogenic niche, including proliferation, differentiation, and migration, remaining viable for over 110 days. Within the first 20 days, bioprinted constructs showed the formation of positive cell clusters for the neurogenic niche cell markers FABP7, NESTIN, and GFAP. Clusters were interconnected by process bundles supporting cell migration. The cells proliferated within the clusters, and over time, NPCs originated TUBB3þ neurons with long axonal tracts, prominent around the clusters. We propose this as a 4D model to study neurogenic niches’ key cellular and molecular features in a 3D bioprinted scaffold, adding time as the fourth dimension. Neuronal maturation in this dynamic model recapitulates key neurogenic niche properties, making it suitable for neurodevelopmental disease modeling and drug screening.
dc.description.physical19 p.
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.uriFAPESP: Processo n. 2018/12605-8; 2019/08975-7; CNPq: Grants 465656/2014-5, 406258/2022-8, and 311026/2022-2; CAPES: finance code 001
dc.format.mimetypepdf
dc.identifier.affiliationUniversidade de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade do Vale do Paraíba
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.affiliationUniversidade Federal de São Paulo
dc.identifier.bibliographicCitationMACHADO, L.; FERREIRA, P.; PIRES, M.; BIM, L.; DE OLIVEIRA, N.; SALLES, G.; FERREIRA, N.; CRUZ, E.; PORCIONATTO, M. 3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche. APL BIOENGINEERING, [S. l.], v. 9, n. 3, 1 set. 2025. https://doi.org/10.1063/5.0276704.
dc.identifier.doihttps://doi.org/10.1063/5.0276704
dc.identifier.urihttps://repositorio.univap.br/handle/123456789/1153
dc.language.isoen_US
dc.publisherAIP Publishing
dc.rights.holderLucas Simões Machado
dc.rights.holderPaula Scanavez Ferreira
dc.rights.holderMarina Rodrigues Pires
dc.rights.holderLarissa Valdemarin Bim
dc.rights.holderNatalia Heloísa de Oliveira
dc.rights.holderGeisa Rodrigues Salles
dc.rights.holderNatalia Dall’Agnol Ferreira
dc.rights.holderElisa Marozzi Cruz
dc.rights.holderMarimelia Aparecida Porcionatto
dc.subject.keywordOrganoids
dc.subject.keywordMigration
dc.subject.keywordHydrogels
dc.title3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche
dc.typeArtigos de Periódicos

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Machado et al. - 2025 - Ok - 3D bioprinted human iPSC-derived neural proge.pdf
Tamanho:
16.61 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: