3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche
| dc.contributor.author | Machado, Lucas Simões | |
| dc.contributor.author | Ferreira, Paula Scanavez | |
| dc.contributor.author | Pires, Marina Rodrigues | |
| dc.contributor.author | Bim, Larissa Valdemarin | |
| dc.contributor.author | Oliveira, Natália Heloísa de | |
| dc.contributor.author | Salles, Geisa Rodrigues | |
| dc.contributor.author | Ferreira, Natalia Dall'Agnol | |
| dc.contributor.author | Cruz, Elisa Marozzi | |
| dc.contributor.author | Porcionatto, Marimelia Aparecida | |
| dc.date.accessioned | 2026-02-13T18:35:26Z | |
| dc.date.available | 2026-02-13T18:35:26Z | |
| dc.date.issued2 | 2025-09-09 | |
| dc.description.abstract | Animal models, especially rodents, used to study neurodevelopment have significantly advanced our comprehension of cellular and molecular mechanisms. Nevertheless, differences in species-specific structures, gestation periods, and interneuronal connections limit animal models’ ability to represent human neurodevelopment accurately. The unique characteristics of primate neural progenitor cells (NPCs) enable cortex expansion with gyrus formation, which does not occur in lissencephalic animals, like rodents. Therefore, there is a need for novel in vitro models using human cells that recapitulate the complexity of human brain development. Along with organoids, 3D bioprinting offers a platform for creating more complex in vitro models. We developed, extensively characterized, and successfully used a GeltrexTM/GelMA hydrogel blend to bioprint human induced pluripotent stem cells-derived NPCs (hNPCs). We show that 3D bioprinted hNPCs can selforganize, revealing key features of a neurogenic niche, including proliferation, differentiation, and migration, remaining viable for over 110 days. Within the first 20 days, bioprinted constructs showed the formation of positive cell clusters for the neurogenic niche cell markers FABP7, NESTIN, and GFAP. Clusters were interconnected by process bundles supporting cell migration. The cells proliferated within the clusters, and over time, NPCs originated TUBB3þ neurons with long axonal tracts, prominent around the clusters. We propose this as a 4D model to study neurogenic niches’ key cellular and molecular features in a 3D bioprinted scaffold, adding time as the fourth dimension. Neuronal maturation in this dynamic model recapitulates key neurogenic niche properties, making it suitable for neurodevelopmental disease modeling and drug screening. | |
| dc.description.physical | 19 p. | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.uri | FAPESP: Processo n. 2018/12605-8; 2019/08975-7; CNPq: Grants 465656/2014-5, 406258/2022-8, and 311026/2022-2; CAPES: finance code 001 | |
| dc.format.mimetype | ||
| dc.identifier.affiliation | Universidade de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade do Vale do Paraíba | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.affiliation | Universidade Federal de São Paulo | |
| dc.identifier.bibliographicCitation | MACHADO, L.; FERREIRA, P.; PIRES, M.; BIM, L.; DE OLIVEIRA, N.; SALLES, G.; FERREIRA, N.; CRUZ, E.; PORCIONATTO, M. 3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche. APL BIOENGINEERING, [S. l.], v. 9, n. 3, 1 set. 2025. https://doi.org/10.1063/5.0276704. | |
| dc.identifier.doi | https://doi.org/10.1063/5.0276704 | |
| dc.identifier.uri | https://repositorio.univap.br/handle/123456789/1153 | |
| dc.language.iso | en_US | |
| dc.publisher | AIP Publishing | |
| dc.rights.holder | Lucas Simões Machado | |
| dc.rights.holder | Paula Scanavez Ferreira | |
| dc.rights.holder | Marina Rodrigues Pires | |
| dc.rights.holder | Larissa Valdemarin Bim | |
| dc.rights.holder | Natalia Heloísa de Oliveira | |
| dc.rights.holder | Geisa Rodrigues Salles | |
| dc.rights.holder | Natalia Dall’Agnol Ferreira | |
| dc.rights.holder | Elisa Marozzi Cruz | |
| dc.rights.holder | Marimelia Aparecida Porcionatto | |
| dc.subject.keyword | Organoids | |
| dc.subject.keyword | Migration | |
| dc.subject.keyword | Hydrogels | |
| dc.title | 3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche | |
| dc.type | Artigos de Periódicos |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- Machado et al. - 2025 - Ok - 3D bioprinted human iPSC-derived neural proge.pdf
- Tamanho:
- 16.61 MB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: