Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning
dc.contributor.author | Araújo, Daniella Castro | |
dc.contributor.author | Veloso, Adriano Alonso | |
dc.contributor.author | Oliveira Filho, Renato Santos de | |
dc.contributor.author | Giraud, Marie-Noelle | |
dc.contributor.author | Raniero, Leandro José | |
dc.contributor.author | Ferreira, Lydia Masako | |
dc.contributor.author | Bitar, Renata Andrade | |
dc.date.accessioned | 2025-06-13T11:24:26Z | |
dc.date.available | 2025-06-13T11:24:26Z | |
dc.date.issued2 | 2021 | |
dc.description.abstract | Early-stage detection of cutaneous melanoma can vastly increase the chances of cure. Excision biopsy followed by histological examination is considered the gold standard for diagnosing the disease, but requires long high- cost processing time, and may be biased, as it involves qualitative assessment by a professional. In this paper, we present a new machine learning approach using raw data for skin Raman spectra as input. The approach is highly efficient for classifying benign versus malignant skin lesions (AUC 0.98, 95% CI 0.97–0.99). Furthermore, we present a high-performance model (AUC 0.97, 95% CI 0.95–0.98) using a miniaturized spectral range (896–1039 cm− 1), thus demonstrating that only a single fragment of the biological fingerprint Raman region is needed for producing an accurate diagnosis. These findings could favor the future development of a cheaper and dedicated Raman spectrometer for fast and accurate cancer diagnosis. | |
dc.description.physical | 9 p. | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.mimetype | ||
dc.identifier.affiliation | Universidade do Vale do Paraíba | |
dc.identifier.affiliation | Universidade Federal de Minas Gerais | |
dc.identifier.affiliation | Universidade Federal de São Paulo | |
dc.identifier.affiliation | University of Fribourg | |
dc.identifier.bibliographicCitation | ARAÚJO, D. C. et al. Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning. Artificial Intelligence in Medicine, v. 120, p. 1-9, 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0933365721001548. | |
dc.identifier.doi | 10.1016/j.artmed.2021.102161 | |
dc.identifier.uri | https://repositorio.univap.br/handle/123456789/1000 | |
dc.language.iso | en_US | |
dc.publisher | Elsevier | |
dc.rights.holder | Artificial Intelligence in Medicine | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Melanoma | |
dc.subject.keyword | Raman spectroscopy | |
dc.subject.keyword | Optical diagnosis | |
dc.subject.keyword | Explanatory modeling | |
dc.title | Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning | |
dc.type | Artigos de Periódicos |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning.pdf
- Tamanho:
- 3.23 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Acesso via Portal Capes
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: