Photometric redshifts for the S-PLUS Survey: Is machine learning up to the task?
dc.contributor.author | Lima, Erik Vinicius Rodrigues | |
dc.contributor.author | Sodré Junior, Laerte | |
dc.contributor.author | Bom, Clécio Roque | |
dc.contributor.author | Teixeira, Gabriel da Silva Moreira | |
dc.contributor.author | Nakazono, Lilianne Mariko Izuti | |
dc.contributor.author | Buzzo, Maria Luisa | |
dc.contributor.author | Queiroz, Carolina Queiroz de Abreu | |
dc.contributor.author | Herpich, Fábio R. | |
dc.contributor.author | Castellon, José Luis Nilo | |
dc.contributor.author | Dantas, Maria Luiza Linhares | |
dc.contributor.author | Dors Junior, Oli Luiz | |
dc.contributor.author | Souza, Rodrigo Clemente Thom de | |
dc.contributor.author | Akras, Stavros | |
dc.contributor.author | Jiménez-Teja, Yolanda | |
dc.contributor.author | Kanaan, Antonio | |
dc.contributor.author | Ribeiro, Tiago | |
dc.contributor.author | Schoennell, William | |
dc.date.accessioned | 2025-04-08T13:46:50Z | |
dc.date.available | 2025-04-08T13:46:50Z | |
dc.date.issued2 | 2021 | |
dc.description.abstract | The Southern Photometric Local Universe Survey (S-PLUS) is a novel project that aims to map the Southern Hemisphere using a twelve filter system, comprising five broad-band SDSS-like filters and seven narrow-band filters optimized for important stellar features in the local universe. In this paper we use the photometry and morphological information from the first S-PLUS data release (S-PLUS DR1) cross-matched to unWISE data and spectroscopic redshifts from Sloan Digital Sky Survey DR15. We explore three different machine learning methods (Gaussian Processes with GPz and two Deep Learning models made with TensorFlow) and compare them with the currently used template-fitting method in the S-PLUS DR1 to address whether machine learning methods can take advantage of the twelve filter system for photometric redshift prediction. Using tests for accuracy for both single-point estimates such as the calculation of the scatter, bias, and outlier fraction, and probability distribution functions (PDFs) such as the Probability Integral Transform (PIT), the Continuous Ranked Probability Score (CRPS) and the Odds distribution, we conclude that a deep-learning method using a combination of a Bayesian Neural Network and a Mixture Density Network offers the most accurate photometric redshifts for the current test sample. It achieves single-point photometric redshifts with scatter ( ) of 0.023, normalized bias of -0.001, and outlier fraction of 0.64% for galaxies with r_auto magnitudes between 16 and | |
dc.description.physical | 15 p. | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.uri | CAPES (88887.470064/2019-00; 304819/2017-4) FAPESP (2019/10923-5; 2019/01312-2; 2014/10566-4; 2015/11442-0; 2019/06766-1) CNPq (169181/2017-0; 304819/2017-4) | |
dc.format.mimetype | ||
dc.identifier.affiliation | Universidade de São Paulo | |
dc.identifier.affiliation | Centro Brasileiro de Pesquisas Físicas | |
dc.identifier.affiliation | Centro Federal de Educação Tecnológica Celso Suckow da Fonseca | |
dc.identifier.affiliation | Universidade Federal do Rio Grande do Sul | |
dc.identifier.affiliation | Universidad de La Serena | |
dc.identifier.affiliation | Polish Academy of Sciences | |
dc.identifier.affiliation | Universidade do Vale do Paraíba | |
dc.identifier.affiliation | Universidade Estadual de Maringá | |
dc.identifier.affiliation | Universidade Federal do Paraná | |
dc.identifier.affiliation | National Observatory of Athens | |
dc.identifier.affiliation | Instituto de Astrofísica de Andalucía | |
dc.identifier.affiliation | Universidade Federal de Santa Catarina | |
dc.identifier.bibliographicCitation | LIMA, Erik Vinicius Rodrigues et al. Photometric redshifts for the S-PLUS Survey: Is machine learning up to the task? Astronomy and Computing, v. 38, p. 1-15, 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2213133721000640. | |
dc.identifier.doi | 10.1016/j.ascom.2021.100510 | |
dc.identifier.uri | https://repositorio.univap.br/handle/123456789/821 | |
dc.language.iso | en_US | |
dc.publisher | Elsevier | |
dc.rights.holder | Astronomy and Computing | |
dc.subject.keyword | Galaxies: distances and redshifts | |
dc.subject.keyword | Photometric | |
dc.subject.keyword | Surveys | |
dc.title | Photometric redshifts for the S-PLUS Survey: Is machine learning up to the task? | |
dc.type | Artigos de Periódicos |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- Photometric redshifts for the S-PLUS Survey- Is machine learning up to the task?.pdf
- Tamanho:
- 1.78 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Acesso via Portal Capes
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: