Produção acadêmica-PPGFA
URI Permanente para esta coleção
Navegar
Submissões Recentes
Item Study of height-spread sporadic-E layers observed in the South American Magnetic Anomaly(Frontiers) Moro, Juliano; Xu, Jiyao; Bageston, Jose Valentin; Silva, Ligia Alves da; Resende, Laysa Cristina Araújo; Nardin, Clezio Marcos de; Andrioli, Vania Fatima; Santos, Angela Machado; Picanco, Giorgio Arlan da Silva; Li, Hui; Zhengkuan, Liu; Wang, Chi; Schuch, Nelson JorgeSpread echoes from the E-region observed in ionograms obtained at high latitudes are generally classified as auroral sporadic-E (Esa) layers. These layers have also been detected in nighttime ionograms collected at some ionospheric stations in the South American Magnetic Anomaly (SAMA) region in Brazil during the recovery phases of geomagnetic storms. However, similar echoes have also been observed in the SAMA during geomagnetically quiet periods or daytime, which are not caused by energetic particle precipitation. Therefore, investigating the occurrence of these spread echoes over a longer period, rather than focusing solely on case studies, has become important. Thus, this study aims to analyze the occurrences of spread echoes from the E-region, referred to here for the first time as “Height-Spread Es (HSEs) layers.” The analysis is based on Digisonde data obtained at the Santa Maria station (29.7° S, 53.8° W, ∼22.000 nT) in Brazil over 1 year (2019/2020). The study initially presents examples of these traces on ionograms and then examines their occurrence rates over several time intervals (hours, months, seasons). Among other findings, the statistical analysis reveals that the occurrence rate of HSEs layers is 9.8% during the analyzed period. The HSEs layers appeared predominantly at night and under geomagnetically quiet conditions. Most HSEs layers lasted between 1 h and 3 h 30 min, with a peak incidence during November, December, and January. Finally, the study discusses the most likely mechanisms responsible for HSEs layer formation, considering the geomagnetic conditions and time of their detection on ionograms.Item Observation and simulation studies of ionospheric F-region in the South American and Antarctic sectors in the intense geomagnetic storm of August 2018(Elsevier) Abreu, Alessandro José de; Correia, Emilia; Jonah, Olusegun Folarin; Venkatesh, Kavutarapu; Thomas, Evan G.; Jesus, Rodolfo F. de; Roberto, Marisa; Abalde, José Ricardo; Fagundes, Paulo RobertoIn this investigation, we present and discuss the ionospheric F region observations in the equatorial, low-, mid-, and near high-latitude regions in the South American and Antarctic sectors during the intense geomagnetic storm that occurred on 25–27 August 2018. The geomagnetic storm reached a minimum Dst of − 175 nT at ~0700 UT on 26 August. We present the variations of vertical total electron content (VTEC) from a chain of almost 200 GPS stations, covering the South American and Antarctic sectors. A comparison with model simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) is realized. The results ob- tained show that during the main phase of the storm, a southward Bz component of the interplanetary magnetic field (IMF) and an eastward prompt penetration electric field (PPEF) can be observed, but they had no significant impact on the ionospheric plasma. A long recovery phase a predominance of positive phase is observed during daytime. The observations show the effects of an unusual case of multiple PPEF, occurred on 26 August, and effects of thermospheric winds disturbances, occurred on 27 August, resulting in increased VTEC values on both days. The TIE-GCM model reproduces the VTEC increases during the main and recovery phases from mid- latitudes to the equatorial region, but it underestimates the observed values near high-latitudes.Item Momentum flux characteristics of vertically propagating gravity waves(European Geosciences Union) Nyassor, Prosper Kwamla; Wrasse, Cristiano Max; Paulino, Igo; Yigit, Erdal; Tsali-Brown, Vera Yesutor; Buriti, Ricardo Arlen; Figueiredo, Cosme Alexandre Oliveira Barros; Giongo, Gabriel Augusto; Egito, Fabio; Adebayo, Oluwasegun Micheal; Takahashi, Hisao; Gobbi, DelanoMomentum flux and propagation dynamics of two vertically propagating atmospheric gravity waves (GWs) are studied using observations at São João do Cariri (7.40° S, 36.31° W), Brazil, from co-located pho- tometer, all-sky imager, and meteor radar instruments. Time series of the atomic oxygen green line (OI 557.7 nm), molecular oxygen (O2 (0–1)), sodium D-line (NaD), and hydroxyl (OH (6–2)) airglow intensity variations mea- sured by the photometer were used to investigate the vertical characteristics and vertical phase progression of the GWs with similar (± 10 % of the error margin) or nearly the same (± 5 % of the error margin) period across these emission layers. The horizontal parameters of the same GWs were determined from the OH airglow im- ages, whereas the intrinsic parameters of the horizontal and vertical components of the GWs were estimated with the aid of the observed winds. Using the phase of the GWs at each emission layer, the characteristics of the phase progression exhibited near-vertical propagation under a duct background propagation condition. This indicates that the duct contributes significantly to the observed near-vertical phase propagation. The GW mo- mentum flux and potential energy were estimated using the rotational temperatures of OH and O2, revealing that the time series of momentum fluxes and potential energies are higher in the O2 emission band than in the OH band, indicating a transfer of momentum and energy across OH to the O2 altitude. These results reveal the effect of a duct on vertically propagating GWs and the associated momentum flux and potential energy transfer from the lower to the upper altitudes in the mesosphere.Item Molecular Evolution of H2O:O2 Ices at Different Temperatures in Simulated Space Environments. I. Chemical Kinetics and Equilibrium(IOP science) Silva, Josiane Ribeiro Campos; Queiroz, Letícia Marques de Souza Vetrano de; Ferrão, Luiz Fernando de Araújo; Pilling, SergioWe computationally investigated the chemical evolution of H2O:O2 ices (6:1 ratio) under irradiation by cosmic- ray analogs (0.8MeV H+) at 9, 50, and 100K to understand the implications the chemical evolution of O2-containing ices in space, such as the surface of the Moon, comets, outer solar system bodies such Europa and Enceladus, as well as Kuiper Belt objects, and cold regions of the interstellar medium (ISM). Using experimental data and the PROCODA code with 200 reactions coupled equations involving 12 species, we calculated physicochemical parameters such as effective rate coefficients (ERCs), chemical abundances, and desorption. Six species were observed experimentally (H2O, O2, HO2, H2O2, O3, and HO3), while six were predicted but not observed in the experiments (H, H2, H3, O, OH, and H3O). Our findings highlight the influence of temperature on chemical equilibria and desorption yields, with certain reaction rates diminishing at 50 K. Among the results were the lists with the ERCs, and the reaction branching ratio obtained by best-fit models can be employed in astrochemical models. Curiously, we observe that the average ERCs for bimolecular collisions decrease by half as the ice temperature increases, varying from 5.8e-25 to 2.9e-25 cm3 molecules−1 s−1 for the ices studied. These results enhance our understanding of the physical chemistry of astrophysical ices under ionizing radiation, providing valuable data for astrochemical models that assess the effects of cosmic radiation on the composition and stability of icy bodies in the solar system and denser and colder regions of the ISM.Item Metallicity of active galactic nuclei from ultraviolet and optical emission lines: I. Carbon abundance dependence(Royal Astronomical Society) Dors Junior, Oli Luiz; Oliveira Junior, Celso Benedito de; Cardaci, Mónica Viviana; Hagele, Guillermo Federico; Morais, Istenio Nunes de; Ji, Xihan; Riffel, Rogemar André; Riffel, Rogério; Mezcua, Mar; Almeida, Gleicy Caroline de; Santos, Pedro Camargo; Mellos, Maitê Silvana de Zorzi deMetallicity (Z) estimates based on ultraviolet (UV) emission lines from the narrow-line regions of active galactic nuclei (AGNs) have been found to differ from those derived from optical lines. However, the origin of this discrepancy (ZR) remains poorly understood. To investigate the source of ZR, we compiled from the literature the fluxes of narrow near- UV [1000 < λ(Å) < 2000] and optical [3000 < λ(Å) < 7000] emission-line measurements for a sample of 11 AGNs (nine at z < 0.4 and two at z ∼ 2.4). Metallicity values for our sample were derived using a semi-empirical calibration based on the C43 = log[(C IVλ1549 + C III]λ1909)/He IIλ1640] emission-line ratio and compared with those obtained via direct measurement of the electron temperature (Te-method) and via calibrations based on optical emission lines. The source of the discrepancy was investigated in terms of the ionization parameter (U), electron density (Ne), and carbon abundance (C/H). We found a weak correlation between ZR, U, and Ne. However, a moderate correlation was observed between ZR and direct estimates of C/H, suggesting that the previously assumed (C/O)–Z relations in photoionization models used to derive UV carbon-line calibrations may not be valid for AGNs. By combining a large set of abundance estimates for local star-forming regions with those of our AGN sample, we derived a new (C/O)–Z relation. Comparisons between the results of photoionization models that assume this new abundance relation and the UV observational data of our sample produce Z values derived from the C43 index that are consistent with those obtained using the Te-method.Item Influence of Climate and Solar Variability on Growth Rings of Araucaria angustifolia in Três Barras National Forest (Brazil)(MDPI) Muraja, Daniela Oliveira Silva; Klausner, Virginia; Prestes, Alan; Silva, Aline Conceicao da; Lemes, Cecilia LeiteThis research applies continuous wavelet analysis and seasonal correlation anal- ysis to tree-ring data from Três Barras National Forest (FLONA Três Barras), revealing diverse influences on growth, including climate, solar activity, and external factors. The methodology involved tree-ring collection and subsequent wavelet and seasonal analy- ses to unveil the non-stationary characteristics of and multifaceted influences on growth. Key findings include the subtle effects of El Niño events on tree-ring development, the sensitivity of Araucaria angustifolia to temperature changes, the significant influence of precipitation during drought periods, and the intricate relationship between tree growth and solar cycles. The El Niño–Southern Oscillation (ENSO) emerges as a primary climatic driver during specific intervals, with external factors (precipitation, temperature, and solar cycle–solar irradiance) influencing tree response between 1936 and 1989. Additionally, the seasonal correlation analysis highlighted the importance of sub-annual climate variability, capturing specific intervals, such as a 3-month season ending in March of the previous year, that significantly impacted tree-ring growth. The study underscores the importance of protecting the endangered Araucaria angustifolia for climatic studies and local commu- nities. Historically, in Brazil, Araucaria angustifolia seeds played a vital role in sustaining indigenous populations, which in turn helped to disperse and propagate forests, creating anthropogenic landscapes that highlight the interconnected relationship between humans and the preservation of these forests.Item Global ionospheric response to a G2 and a G3 geomagnetic storms of November 4 and 5 2023(Elsevier) Agyei-Yeboah, Ebenezer; Fagundes, Paulo Roberto; Tardelli, Alexandre; Pillat, Valdir Gil; Vieira, Francisco; Bolzan, Mauricio José AlvezTwo successive geomagnetic storms of G2 and G3 intensities were observed on November 4, 2023, and November 5, 2023. The results presented in this study investigated the impacts of two geomagnetic storms during the main phases at equatorial, low-latitude, and EIA and beyond over west/east American, west/east African/European, and west/east Asian longitudinal sectors. This study was carried out using 30 GPS receivers, 30 magnetometers, and three ionosondes (East Brazilian sector). Positive storm effects were observed during the main phases of both the G2 (storm1) and G3 (storm2) storms, however the magnitude of the positive storm effects was greater during the G3 main phase than during the G2 main phase. The American sectors recorded the highest VTEC variations. Negative storm effects were mostly observed over the Asian sectors. Minimal changes in VTEC were observed in the Asian sectors during both main phases, except over DAEJ. The American sectors exhibited the strongest positive storm responses, followed by the African and Asian sectors, with VTEC enhancements being more pronounced during the G3 storm’s main phase compared G2 storm. Positive ionospheric effects extended to higher latitudes during the main phase of G3 storm especially in the American sectors, likely due to eastward prompt pen- etration electric fields (PPEF) uplifting the F-region to altitudes where lower recombination rates lead to VTEC enhancement. This PPEF effect varied with longitude and storm intensity, resulting in significant positive ionospheric responses in the American sector, par- ticularly during the G3 storm. Variations in the thermospheric O/N2 ratio further influenced the VTEC changes across all sectors. The EIA exhibited notable disturbances, particularly in the American sector. By contrast, EIA crest features were less distinct in the African sector, highlighting the longitudinal dependencies of PPEF effects on the EIA structure. The EIA features were more pronounced during the main phase of the first storm, whereas during the second, the crests appeared to merge into one structure extending beyond the typical crest regions. The foF2 obtained from ionogram also increased during the main phases in the American sector with no significant h’F variations. The DH showed marked depressions, particularly in the American and African sectors, with the G3 storm producing stronger DH depressions than the G2 storm. Similar longitudinal and latitudinal DH variations were observed across both events, with substantial decreases in DH over specific stations, such as ABG and JAI, in the West Asian sector.Item Evidence of Unusually Strong Equatorial Ionization Anomaly at Three Local Time Sectors During the Mother's Day Geomagnetic Storm On 10-11 May 2024(Advancing Earth and Space Sciences) Rout, Diptiranjan; Kumar, Ankit; Singh, Ram; Patra, Swadesh; Karan, Deepak K.; Chakraborty, Shibaji; Scipion, Danny; Chakrabarty, Dibyendu; Riccobono, JuanitaThis study uses multiple ground and satellite‐based measurements to investigate the extreme ionospheric response to the Mother's Day storm on May 10–11, 2024. Prompt penetration electric field caused a significant enhancement in the ionospheric vertical drift (∼ 95 m/s) and the equatorial electrojet strength (∼275 nT) over Jicamarca. These extreme eastward electric field perturbations, along with the large meridional wind, significantly altered the F‐region plasma fountain at different local times. The afternoon equatorial ionization anomaly (EIA) not only sustained for an exceptionally long duration (∼ 12 hr) but also expanded spatially over time. The separation between the two peaks of EIA crests exceeded ∼48° and ∼70° in the morning and evening sectors, respectively. This study shows, for the first time, that unusually strong EIA can not only develop at different local times but can also sustain for long duration under favorable conditions, which has implications for space weather applications.Item Effects of planetary wave oscillation on E-sporadic (Es) layers during the rare Antarctic sudden stratospheric warming of 2019(Elsevier) Fontes, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Jesus, Rodolfo de; Fagundes, Paulo Roberto; Mitra, Gourav; Pillat, Valdir Gil; Batista, Paulo Prado; Buriti, Ricardo Arlen; Correia, Emília; Muka, Peter TaiwoThis study investigates the impact of the rare 2019 Antarctic Sudden Stratospheric Warming (SSW) event on the top frequency parameter (ftEs) of the sporadic E (Es) layers, using data from several ionosondes located at low and mid-latitudes across the Southern and Northern Hemispheres, including stations in the American, Oceanian, and Asian regions. The ionosonde data were also used to identify frequency anomalies in the Es layers during the event. Additionally, data from three meteor radars in South America were used to further analyze the impact of the SSW, focusing on key parameters such as tidal winds and Planetary Wave (PW) oscillations. The study found significant ftEs peaks exceeding 10 MHz, particularly at low-latitude stations, with values reaching up to 20 MHz. The presence of these atypical peaks in ftEs was related to PW activity, which intensified the electron densities in the Es layers. A wavelet analysis of the ftEs and neutral wind data revealed oscillations associated with PW and tidal interactions, with dominant periods of ∼2–8-days. These patterns were more pronounced in the Southern Hemisphere, indicating stronger PW-tide coupling compared to the Northern Hemisphere. In addition, this study shows that the non-linear interaction between the PW and the tides occurred globally, generating secondary oscillations of ∼2–8-days on the Es layer development for the three continents. These oscillations were observed in the zonal (U) and meridional (V) winds of the diurnal and semidiurnal tides (DT and ST) during the SSW event, demonstrating a coupling in the troposphere-stratosphere-lower atmosphere dynamics. The coupling between the stratosphere and lower thermosphere contributed to the observed anomalies, revealing the broader impacts of SSW events on Es layer behavior. This study provides an understanding of the impact of SSW on Es layers, using ionosonde data and wave oscillation analysis that could enhance data assimilation models for more accurate ionospheric prediction.Item Equatorial Ionization anomaly disturbances (EIA) triggered by the May 2024 solar Coronal Mass Ejection (CME): The strongest geomagnetic superstorm in the last two decades(Elsevier) Fagundes, Paulo Roberto; Pillat, Valdir Gil; Habarulema, John Bosco; Muella, Marcio Tadeu de Assis Honorato; Venkatesh, Kavutarapu; Abreu, Alessandro José de; Anoruo, Chukwuma Moses; Vieira, Francisco; Welyargis, Kibrom Hadush; Agyei-Yeboah, Ebenezer; Tardelli, Alexandre; Felix, Gabriela de Sousa; Picanço, Giorgio Arlan da SilvaBetween May 10–15, 2024, a geomagnetic superstorm, the most intense in the past two decades, was recorded. This G5-level super- storm exhibited a Disturbance Storm Time (Dst) index of −412 nT and a Kp index of 9. The sudden storm commencement (SSC) occurred on May 10 at 17:05 UT, followed by the main phase from 18:00 UT on May 10 to 03:00 UT on May 11. The recovery phase lasted from 03:00 UT on May 11 until May 15. During this period, nine X-class solar flares were observed, indicating intense solar activ- ity. The superstorm led to significant ionospheric disturbances, which were analyzed using data from two ionosonde stations and GPS- TEC data from a network across the American sector, covering equatorial to low-mid latitude regions. A negative storm effect was observed in the equatorial region, while a positive ionospheric effect was observed in the low-mid latitudes during the main phase, accom- panied by the uplift of the F-layer to altitudes exceeding 1024 km, driven by storm induced prompt penetration electric fields. Addition- ally, a strong negative storm effect was recorded during the recovery phase on May 11 in daytime, probably due to O/N2 ratio changes.Item Detection of the White Dwarf Spin of the Long-orbital Period Magnetic Cataclysmic Variable V1082 Sgr(American Astronomical Society) Lima, Isabel de Jesus; Tovmassian, Gagik; Rodrigues, Claudia Vilega; Oliveira, Alexandre Soares de; Luna, Gerardo Juan Manuel; Buckley, David A. H.; Silva, Karleyne Medeiros Gomes da; Figueiredo, Ana Carolina Mattiuci; Souza, Diego Carvalho de; Schlindwein, Wagner; Marques, Fernando Falkenberg; Palhares, Matheus SoaresWe report on the discovery of circular polarization modulated with a period of 1.943 ± 0.002hr in the cataclysmic variable V1082 Sgr. These findings unambiguously reveal the rotation of a magnetic white dwarf and establish its intermediate polar nature. Along with its extraordinary long orbital period (Porb) of 20.8 hr, the spin period (Pspin) places this system in an extreme position of the Pspin versus Porb distribution. The circular polarization phase diagram has a single peak and an amplitude smaller than 1%. These data were used to model the postshock region of the accretion flow on the white dwarf surface using the CYCLOPS code. We obtained a magnetic field in the white dwarf pole of 11 MG and a magnetospheric radius consistent with the coupling region at around 2–3 white dwarf radii. The Pspin/Porb value and the estimated magnetic field momentum suggest that V1082 Sgr could be out of spin equilibrium or in a spin-up state, possibly in a stream accretion mode.Item CIR-Driven Geomagnetic Storm and High-Intensity Long-Duration Continuous AE Activity (HILDCAA) Event: Effects on Brazilian Equatorial and Low-Latitude Ionosphere-Observations and Modeling(MDPI) Abaidoo, Samuel; Klausner, Virginia; Candido, Claudia Maria Nicoli; Pillat, Valdir Gil; Godoy, Stella Pires de Moraes Santos Ribeiro; Guedes, Fabio Becker; Toledo, Josiely Aparecida do Espirito Santo; Trigo, Laura LuizThis paper investigates the effects of a Corotating Interaction Region (CIR)/High-Speed Stream (HSS)-driven geomagnetic storm from 13 to 23 October 2003, preceding the well-known Halloween storm. This moderate storm exhibited a prolonged recovery phase and persistent activity due to a High-Intensity Long-Duration Continuous AE Activity (HILDCAA) event. We focus on low-latitude ionospheric responses induced by Prompt Penetration Electric Fields (PPEFs) and Disturbance Dynamo Electric Fields (DDEFs). To assess these effects, we employed ground-based GNSS receivers, Digisonde data, and satellite observations from ACE, TIMED, and SOHO. An empirical model by Scherliess and Fejer (1999) was used to estimate equatorial plasma drifts and assess disturbed electric fields. Results show a ∼120 km uplift in hmF2 due to PPEF, expanding the Equatorial Ionization Anomaly (EIA) crest beyond 20° dip latitude. DDEF effects during HILDCAA induced sustained F-region oscillations (∼100 km). The storm also altered thermospheric composition, with [[O]/[N2] enhancements coinciding with TEC increases. Plasma irregularities, inferred from the Rate of TEC Index (ROTI 0.5–1 TECU/min), extended from equatorial to South Atlantic Magnetic Anomaly (SAMA) latitudes. These results demonstrate prolonged ionospheric disturbances under CIR/HSS forcing and highlight the relevance of such events for understanding extended storm-time electrodynamics at low latitudes.Item Characterization of H2O:N2 ice under bombardment by cosmic rays: I. Reaction rates and chemical equilibrium(Royal Astronomical Society) Queiroz, Lucas Marcos da Silva; Silva, Josiane Ribeiro Campos; Ferrao, Luiz Fernando de Araújo; Pilling, SergioIn space, nitrogen-rich ice is constantly exposed to ionizing radiation, which triggers chemical reactions and desorption processes allowing a chemical enhancement of interstellar medium (ISM). Here, we present the first part of a series of studies on the effect of cosmic ray bombardment (40 MeV Ni11+ ions) on H2O:N2 (1:5) ice at 15 K, employing the PROCODA code as the modelling tool including 28 chemical species and 930 chemical coupled equations (also including desorption). This first part focuses on the reaction rates and chemical equilibrium stage due to radiation processing. Among the results, we characterize the molecular abundances at chemical equilibrium, including experimentally observed and non-observed species (predicted) suggesting some candidates as a target for astronomical observation. The best-fitting models provided the effective rate coefficients, which can be employed in astrochemical models to understand the chemistry of cold space environments. The findings also help to clarify the chemical processes of N-bearing species in the ISM and frozen surfaces of the Solar system, including the moon of giant planets, outer solar system objects, and ices in the interstellar and protostellar medium.Item Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices?(MDPI) Bonfim, Victor de Souza A.; Oliveira, Daniel Augusto Barra de; Fantuzzi, Felipe; Pilling, SergioAstrophysical ices play a crucial role in the chemistry of cold interstellar environments. However, their diverse compositions, temperatures, and grain morphologies pose significant challenges for molecular identification and quantification through infrared observations. We investigate the ability of implicit solvation approaches to capture temperature-dependent infrared spectral features of CO2 molecules embedded in astrophysical ice analogues, comparing their performance to that of explicit ice models and experimental data. Using DFT calculations and vibrational frequency scaling, we model CO2 trapped in both amorphous (cold) and crystalline (warm) H2O ice clusters. The implicit model qualitatively identifies certain trends but fails to reliably capture the magnitude of frequency shifts and band strengths. Explicit models correctly reproduce the gas-to-solid redshifts for both the asymmetric stretch and bending modes; however, neither approach successfully replicates the experimentally observed temperature-dependent trend in the bending mode. While continuum-like methods may be useful as first-order approximations, explicit modelling of the molecular environment is essential for accurately simulating the infrared spectral behaviour of CO2 in astrophysical ices and for interpreting observational data on ice composition and evolution.Item Análise do comportamento eletromiográfico e da força durante a fadiga do musculo bíceps braquial(Universidade do Vale do Paraíba) Souza, Gabriela Aparecida da Silveira; Macedo, Humberto Gimenes; Klausner, Virginia; Cezarini, Marina Vedelago; Lemos, Sergio Luiz; Nascimento Filho, Alexandre Alves do; Corrêa, Marina; Spinelli, Bruna Moreira de Oliveira; Barbaroto, Douglas; Pinto, Ana Paula; Lima, Mario; Lopes-Martins, Rodrigo; Lima, Fernanda Púpio SilvaA fadiga muscular é definida como a incapacidade de manter a contração muscular e é ocasionada por alterações bioquímicas que modificam a mecânica da contração muscular, resultando em redução da performance atlética. O objetivo deste estudo foi avaliar o comportamento mioelétrico e a força de indivíduos hígidos durante a fadiga do músculo bíceps braquial. O estudo foi composto por 13 voluntários do sexo masculino com idade entre 20 e 30 anos (25±3,7). Para a indução da fadiga muscular foram realizadas três Contrações Isométricas Voluntárias Máximas (CIVM) com duração de 50 segundos e intervalo de 50 segundos, utilizando um dinamômetro computadorizado acoplado ao eletromiógrafo de superfície. Durante a CIVM foi avaliado o sinal eletromiográfico e a força. Foi possível observar nos resultados uma queda da força muscular e dos parâmetros avaliados por meio da eletromiografia durante a fadiga muscular. A partir da regressão linear dos dados obtidos por meio da eletromiografia e dinamometria foi possível obter o coeficiente angular da reta para cada teste (Teste 1, Teste 2 e Teste 3), nota-se que houve queda de todos os parâmetros avaliados por meio da eletromiografia de superfície e da força muscular, entretanto não houve diferença estatística entre os testes, demonstrando similaridade do comportamento do sinal entre os testes. Conclui-se, portanto, que os parâmetros eletromiográficos analisados (frequência média, frequência mediana e RMS) e a força apresentam um decréscimo durante a fadiga muscular induzida por meio da CIVM.Item Morphological Features of Ionospheric Scintillations During High Solar Activity Using GPS Observations Over the South American Sector(Advancing Earth and Space Sciences) Jesus, Rodolfo de; Batista, Inez Staciarini; Takahashi, Hisao; Barros, Diego; Figueiredo, Cosme Alexandre Oliveira Barros; Abreu, Alessandro José de; Jonah, Olusegun Folarin; Fagundes, Paulo Roberto; Venkatesh, KarnamThe main objective of this study is to investigate the ionospheric irregularities observed by Global Positioning System‐total electron content (GPS‐TEC) receivers during the high solar activity years of 2013 and 2014 at different stations in the equatorial and low‐latitude regions in the South American sector. The ionospheric parameters used in this investigation are the TEC, the rate of change of the TEC index (ROTI), and the amplitude scintillation index (S4). In the South American sector, the ROTI and S4 indices showed that the ionospheric irregularities have an annual variation with maximum occurrence from September to April, between 20:00 LT and 02:00 LT, and no occurrence from May to August. Also, strong phase fluctuations (ROTI >1) are observed over South America at 19 LT in October and November. Morlet wavelet analysis of ROTI and S4 showed that planetary wave‐scale periods ranging from 2 to 8 days are predominant during September–March at 20–02 LT in South America. In addition, using a keogram it was possible to evaluate the distance between adjacent ionospheric plasma depletions, and this result is presented and discussed. The longitudinal distances between adjacent bubbles vary around ~600–1000 km, which is larger than values reported in most previous studies.Item Methylenimine and cyanomethanimine synthesis from ion irradiation of N2-CH4 ice: Implication on the formation of prebiotic molecules in outer solar system bodies(Elsevier) Vasconcelos, Fredson de Araujo; Pilling, Sergio; Agnihotri, Aditya Narain; Rothard, Hermann; Boduch, PhilippeThe synthesis of methylenimine and cyanomethanimine from ion irradiation of N2-CH4 ice was studied, in an attempt to simulate the role of medium mass cosmic rays and energetic solar particles in the processing of nitrogen-rich ices on cold astrophysical environments, such as those in the outer region of the solar system (e.g. Pluto, Charon, Triton, Makemake and Titan). The N2-CH4 (90:10) ice mixture was irradiated at 9 K by 38.4 MeV 40Ca9+ (0.96 MeV/u) at the GANIL facility (Caen/Fance). The evolution of the samples was monitored using in-situ Fourier transform infrared spectroscopy (FTIR). The results indicate the formation of CH2NH and CH2NCN, which are considered species of interest in prebiotic chemistry. Other species produced by radiolysis were HCN, HNC, hydrocarbons and nitriles. Direct comparison of the laboratory spectrum from the mixture of reaction products provides an efficient way to focus on the identification of chemical synthesis routes for the production of molecules important in the development of life that are consistent with the chemical inventory and physical conditions on frozen moons and cold objects in the outer solar system.Item Laboratory investigation of x-ray photolysis of methanol ice and its implication on astrophysical environments(Sociedade Brasileira de Química) Freitas, Fabricio Moreira; Pilling, SergioMethanol (CH3OH) is one of the most abundant organic molecules in astrophysical environments. It has been found in cold regions such as surfaces of comets, ices near young stellar objects and protoplanetary disks, as well as in the gas phase in different regions in space. In this work, we experimentally simulate the methanol ice and its behavior when irradiated by broadband soft X-rays. The experiments were performed at the Brazilian Synchrotron Facility LNLS/CNPEM, employing a broadband photon beam (6 to 2000 eV). The frozen sample was analyzed in situ by infrared spectroscopy (IR) in simulated astrophysical at different radiation fluences. The results show the formation of several new species such as CO2, CO, H2O and CH4 during the photolysis CH3OH ice by soft X-rays. We determined effective destruction and formation cross-section, as well as the chemical equilibrium fluence (FE) and desorption yields. The timescale to reach chemical equilibrium in some astrophysical environments with soft X-rays were estimated. The result helps us to understand the photolysis induced by X-rays in organic-rich ices in space environments.Item Ionospheric disturbances in a large area of the terrestrial globe by two strong solar flares of September 6, 2017, the strongest space weather events in the last decade(Elsevier) Fagundes, Paulo Roberto; Pezzopane, Michael; Habarulema, John Bosco; Venkatesh, Karnam; Dias, Maukers Alem Lima; Tardelli, Alexandre; Abreu, Alessandro José de; Pillat, Valdir Gil; Pignalberi, Alessio; Bolzan, Maurício José Alves; Ribeiro, Brunno Augusto Gomes; Vieira, Francisco; Raulin, Jean-Pierre; Denardini, Clezio Marcos; Seemala, Gopi K.; Arcanjo, Mateus de OliveiraOn September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate cor- responding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Elec- tron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a dura- tion of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geo- magnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.Item Identificação e análise de eventos HILDCAA/HILDCAA* para o ano de 1998 usando Python(Universidade do Vale do Paraíba) Lamin, Isabelle Cristine Pellegrini; Klausner, Virginia; Ojeda González, Arian; Prestes, Alan; Pillat, Valdir Gil; Cezarini, MarinaO artigo visa o desenvolvimento de um novo algoritmo via Python para estudar eventos de Atividade Auroral Contínua do Índice AE (Eletrojato Auroral), de Grande Intensidade e Longa Duração, HILDCAAs e HILDCAAs* (no qual * corresponde ao fenômeno HILDCAA flexibilizado). Este algoritmo é baseado e validado por meio do algoritmo previamente desenvolvido por Prestes et al. (2017a) em MATLAB. O intuito deste novo algoritmo proposto aqui é tornar o fluxograma deste acessível a todos os usuários, além de complementar e atualizar o algoritmo em MATLAB já existente. Um importante aspecto é o fato da linguagem de programação de alto nível Python ser uma ferramenta gratuita. Ademais, o artigo também objetiva a comparação dos eventos encontrados no ano de 1998 neste trabalho com aqueles obtidos por Prestes et al. (2017a) e Guarnieri (2006). A nova flexibilização adotada aqui não tem a intensão de suprimir ou modificar a concepção original das HILDCAAs, mostra que os eventos encontrados aqui continuam associados aos fenômenos HSSs/CIRs (Feixes Rápidos do Vento Solar/Regiões de Interações Corrotantes).