Produção acadêmica-PPGFA
URI Permanente para esta coleção
Navegar
Navegando Produção acadêmica-PPGFA por Data de Publicação
Agora exibindo 1 - 20 de 85
Resultados por página
Opções de Ordenação
Item Evidence of anti-correlation between sporadic (Es) layers occurrence and solar activity observed at low latitudes over the Brazilian sector(Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Fagundes, Paulo RobertoSporadic E-layers (Es) are thin and denser layers with high ionization observed at about 100–140 km altitude in the E region. Their formation is mainly associated with the tidal components of the diurnal and semidiurnal winds with the convergence of ions driven by the wind shear mechanism. This present work shows evidence of the relationship between the occurrence of Es layers and the solar activity at two observatories located in the Brazilian sector, the near-equatorial site of Palmas (PAL, 10.17 S; 48.33 W; dip lat. 7.31 ) and the low latitude station of Sa ̃o Jose ́ dos Campos (SJC, 23.18 S; 45.89 W; dip lat. 19.35 ). The analysis was performed from Decem- ber/2008 to November/2009 (a period of low solar activity) and from December/2013 to November/2014 (a period of high solar activity) using data collected from two digital ionosondes. Our results show an anti-correlation of the Es layer occurrence concerning the solar activity over both stations studied here. A more clearly observed anti-correlation at the SJC station can be attributed to a greater tidal amplitude at low latitudes. Other relevant aspects of the observations associated with the formation of the Es layers are highlighted and discussed.Item Exploring patterns in dendrochronological data through cluster analysis(Universidade Federal do Paraná) Muraja, Daniela Oliveira Silva; Leite, Cecília Lemes; Klausner, Virginia; Prestes, Alan; Silva, Iuri Rojahn daThis study employed the dendrogram methodology to analyze time series data obtained from measuring tree growth rings. A total of 64 samples were collected from 21 individual trees. Polynomials were applied to filter the natural growth pattern of the trees and enhance the impact of external factors, such as climate influences. Cluster analysis using Ward's minimum variance and Euclidean squared distance was utilized to group the data based on similarity. Three dendrograms were constructed, consisting of 10, 47, and 64 samples, respectively. The analysis revealed that the samples with the highest correlations, encompassing over 95% of the total samples, formed homogeneous groups. Pearson correlation was also employed to confirm the results obtained from the dendrograms. Consequently, it can be affirmed that the most suitable samples were utilized in constructing the average chronology from the available data.Item Lithosphere atmosphere ionosphere coupling during the September 2015 Coquimbo earthquake(Springer Nature Link) Adhikari, Bhoj Raj; Klausner, Virgínia; Cândido, Claudia Maria Nicoli; Poudel, Prakash; Macedo, Humberto Gimenes; Silwal, Ashok; Gautam, Sujan Prasad; Calabia, Andrés; Shah, MunawarThis study explores temporal variations in seismic data, interplanetary parameters, and geomagnetic indices during the 2015 Coquimbo earthquake. We employ wavelet transform techniques to investigate potential coupling mechanisms between the lithosphere, atmosphere, and ionosphere (LAI), even during geomagnetically disturbed periods. Our analysis is strengthened by evaluating geomagnetic data and all- sky images within a 2000–3000 km radius of the epicenter. We explore the post-Chilean earthquake seismogenic perturbations in the upper atmosphere on September 16–17, 2015. Coseismic and post- seismic events emerge in the Brazilian region 1–3 hrs after the earthquake onset. The co-occurrence and subsequent response of these disturbances to seismic events suggest their seismogenic nature. Addi- tionally, we utilize geomagnetic storm and interplanetary magnetic Beld (IMF) indices to differentiate magnetic Cuctuations arising from solar storms during seismic events. While our study detects magnetic disturbances associated with seismic activity, distinguishing them from the eAects of solar storms in the geomagnetic records or all-sky images remains challenging. These observations prompt further investigation into the intricate interplay between geomagnetic and ionospheric disturbances and their connection to seismic and geomagnetic storm activity.Item Modeling the chemical evolution and kinetics of pure H2O Ices under various types of radiation employing the PROCODA code(Elsevier) Silveira, Carolina Hahn da; Pilling, SergioWater is one of the most abundant molecules in space, especially in cold environments, where it is the main constituting of astrophysical ices. The space ionizing radiation affects these ices and induces chemical changes, including desorption to gas-phase, which increase the complexity of the interstellar medium. In this work, we employed the PROCODA code to investigate the behavior of several pure water ices under different type of ionizing radiation such as UV, X-rays, electrons and cosmic rays analogues. Here, we employ molecular column densities from laboratory and solved a set of coupled chemical reactions to calculated effective reaction rates (ERCs) and characterize the chemical equilibrium of water ices under high radiation fluences. Briefly, we monitored the evolution of nine species (including the observed ones H2O, H2O2, and O3, and the predicted ones H, O, H2, OH, O2, and HO2). A discussion on the branching ratio for the considered reactions with the type of ionizing radiation is provided. Among the results, we observed that approximately 63% of the modeled molecules quantified at chemical equilibrium were non-observed species in the X-rays experiment, highlighting the importance of this work in providing insights into the processes that occur on the surface of icy interstellar grains exposed to cosmic radiation, including the formation and destruction of water ice. Accurate modeling of these processes can lead to a better understanding of the chemical evolution of interstellar and circumstellar environments, as well as offer insight into the formation and composition of celestial objects such as comets.Item Deuteration of molecular clumps induced by cosmic rays(Elsevier) Pilling, Sergio; Pazianotto, Maurício Tizziani; Molina, Jose Manuel QuesadaThe D/H ratio in astrophysical environments has instigated the scientists for at least 50 years. The wide range of values in the interstellar medium (ISM) from 10e to 7 to 10e-1 have usually been claimed to be due to small zero-point energy differences between reactants and products involving D and H (mainly at low temperatures). Here, we present a new source of deuteration processes in the ISM clouds as a result of cosmic ray irradiation. As a study object, we consider a typical molecular clump under the presence of incoming cosmic rays simulated computationally. The calculations were performed employing the Monte Carlo toolkit GEANT4 code (considering hadronic physics) and considering mainly the proton and alpha component of the incoming cosmic rays from the ISM (the dominant ones for the production of secondary protons and deuterons). The results suggest an increasing D/H ratio as function of time in the central part of molecular clumps (<200 AU) with the largest deuteration in the central region of the cloud, and a bump in the D/H ratio around 2–10 AU (which becomes more pronounced for clouds with larger timescales; > 10 Myrs). The results also show that for timescales between 10 and 100 Myrs the central part of the cloud has D/H around 6-16e-3, a value compatible with the observed D/H in some interstellar clouds. This work adds a new piece to the D/H puzzle of the ISM and might also help to explain the D/H ratio measured in different objects inside the Solar system.Item Understanding the astrophysical-ice nanostructures formation through classical molecular dynamics(Universidade do Vale do Paraíba) Silva, Priscila Alves da; Pilling, Sergio; Amarim, Rodrigo GarciaAstrophysical ices (formed by water, among other molecules) act as a catalyst and a reservoir of carbonaceous species, both of which have major implications for astrobiology. In this work, we studied the formation of astrophysical ice nanostructures found in the interstellar medium, having a sheet of graphene as a catalyst substrate, using the classical molecular dynamics technique to model these astrophysical environments. For this, two systems were designed: the first composed of graphene and H2Oand the second composed of graphene, H2Oand CO2. Initially, a simulation box was built where the area was delimited by graphene whose height varied from 4, 6, 8 and 10 nm. The molecules were evenly distributed throughout the box. The molecular dynamics technique proved to be a promising tool to understand the phenomenon of adsorption of molecules on the substrate, allowing us to realize that the random distribution of molecules in the system interferes with the geometric structure formed by an ice nanostructure. This study allows us to understand, from the nanometric point of view, the influence of some physical-chemical parameters, regarding the formation of nanostructures of astrophysical ices, such as the number of hydrogen bonds, the initial size of the simulation box, and its density during the freezing processItem Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes(Elsevier) Fagundes, Paulo Roberto; Tsali-Brown, Vera Yesutor; Pillat, Valdir Gil; Arcanjo, Mateus de Oliveira; Venkatesh, Kavutarapu; Habarulema, John Bosco; Bolzan, Maurício José Alves; Jesusm Rodolfo F. de; Abreu, Alessandro José de; Tardelli, Alexandre; Vieira, Francisco; Denardini, Clezio MarcosCoronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.Item Diagnostic diagrams for ram pressure stripped candidates(Royal Astronomical Society) Krabbe, Angela Cristina; Hernandez-Jimenez, José Andrés; Oliveira, Claudia Mendes de; Jaffe, Yara L.; Oliveira Junior, Celso Benedito de; Cardoso, Nathalia Machado; Castelli, Analía V Smith; Dors Junior, Oli Luiz; Cortesi, Arianna; Crossett, Jacob P.This paper presents a method for finding ram pressure stripped (RPS) galaxy candidates by performing a morphological analysis of galaxy images obtained from the Legacy survey. We consider a sample of about 600 galaxies located in different environments such as groups and clusters, tidally interacting pairs and the field. The sample includes 160 RPS previously classified in the literature into classes from J1 to J5, based on the increasing level of disturbances. Our morphological analysis was done using the ASTROMORPHLIB software followed by the inspection of diagnostic diagrams involving combinations of different parameters like the asymmetry (A), concentration (C), Sersic ´ index (n), and bulge strength parameters F(G, M20). We found that some of those diagrams display a distinct region in which galaxies classified as J3, J4, and J5 decouples from isolated galaxies. We call this region as the morphological transition zone and we also found that tidally interacting galaxies in pairs are predominant within this zone. Nevertheless, after visually inspecting the objects in the morphological transition zone to discard obvious contaminants, we ended up with 33 bona fide new RPS candidates in the studied nearby groups and clusters (Hydra, Fornax, and CLoGS sample), of which one-third show clear evidence of unwinding arms. Future works may potentially further increase significantly the samples of known RPS using such method.Item Understanding the Molecular Kinetics and Chemical Equilibrium Phase of Frozen CO during Bombardment by Cosmic Rays by Employing the PROCODA Code(IOP science) Pilling, Sergio; Carvalho, Geanderson Araújo; Abreu, Heitor Avelino de; Galvão, Breno Rodrigues Lamaghere; Silveira, Carolina Hahn da; Mateus, Marcelo SilvaWithin the cold regions of space, ices that are enriched with carbon monoxide (CO) molecules are exposed to ionizing radiation, which triggers new reactions and desorption processes. Laboratory studies on astrochemical ices employing different projectiles have revealed the appearance of several new species. In this study, we employed the upgraded PROCODA code, which involves a calculation phase utilizing thermochemistry data, to map the chemical evolution of pure CO ice irradiated by cosmic-ray analogs. In the model, we have considered 18 different chemical species (six observed: CO, CO2, C3, O3, C2O, and C5O3; 12 unobserved: C, O, C2, O2, CO3, C3O, C4O, C5O, C2O2, C2O3, C3O2, and C4O2) coupled at 156 reaction routes. Our best-fit model provides effective reaction rates (effective rate constants, (ERCs)), branching ratios for reactions within reaction groups, several desorption parameters, and the characterization of molecular abundances at the chemical equilibrium (CE) phase. The most abundant species within the ice at the CE phase were atomic oxygen (68.2%) and atomic carbon (18.2%), followed by CO (11.8%) and CO2 (1.6%). The averaged modeled desorption yield and rate were 1.3e5 molecules ion−1 and 7.4e13 molecules s−1, respectively, while the average value of ERCs in the radiation-induced dissociation reactions was 2.4e-1 s−1 and for the bimolecular reactions it was 4.4e-24 cm3 molecule−1 s−1. We believe that the current kinetics study can be used in future astrochemical models to better understand the chemical evolution of embedded species within astrophysical ices under the presence of an ionizing radiation field.Item Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector(European Geosciences Union) Fontes, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato; Resende, Laysa Cristina Araújo; Andrioli, Vânia Fátima; Fagundes, Paulo Roberto; Pillat, Valdir Gil; Batista, Paulo Prado; Carrasco, Alexander JoseSporadic E (Es) layers are patches of high ionization observed at around 100–140 km height in the E region. Their formation at low latitudes is primarily associated with the diurnal and semidiurnal components of the tidal winds via the ion convergence driven by the wind shear mechanism. However, recent studies have shown the influence of other tidal modes, such as the terdiurnal tide. Therefore, this work investigates the effect of terdiurnal tide-like oscillations on the occurrence and formation of the Es layers observed over Palmas (10.17∘ S, 48.33∘ W; dip lat. −7.31∘), a low-latitude station in Brazil. The analysis was conducted from December 2008 to November 2009 by using data collected from CADI (Canadian Advanced Digital Ionosonde). Additionally, the E Region Ionospheric Model (MIRE) was used to simulate the terdiurnal tidal component in the Es layer development. The results show modulations of 8 h periods on the occurrence rates of the Es layers during all seasonal periods. In general, we see three well-defined peaks in a superimposed summation of the Es layer types per hour in summer and autumn. We also observed that the amplitude modulation of the terdiurnal tide on the Es occurrence rates minimizes in December in comparison to the other months of the summer season. Other relevant aspects of the observations, with complementary statistical and periodogram analysis, are highlighted and discussed.Item Chemical evolution of electron-bombarded crystalline water ices at different temperatures using the procoda code(Royal Astronomical Society) Pilling, Sergio; Silveira, Carolina Hahn da; Ojeda González, ArianWater ices are a common component of cold space environments, including molecular and protostellar clouds, and the frozen surfaces of moons, planets, and comets. When exposed to ionizing and/or thermal processing, they become a nursery for new molecular species and are also responsible for their desorption to the gas-phase. Crystalline water ice, produced by the deposition of gaseous water at warm (80–150 K) surfaces or by the heating of cold amorphous water ice (up to ∼150 K), is also regularly detected by astronomical observations. Here, we employed the procoda code to map the chemical evolution of 5 keV electron-bombarded crystalline water-ices at different temperatures (12, 40, 60 and 90 K). The chemical network considered a total of 61 coupled reactions involving nine different chemical species within the ice. Among the results, we observe that the average calculated effective rate constants for radiation-induced dissociation decrease as the ice´s temperature increases. The abundance of molecular species in the ice at chemical equilibrium and its desorption to gas-phase depend on both the temperature of the ice. H2O molecules are the dominant desorbed species, with a desorption yield of about 1 molecule per 100 electrons, which seems to be enhanced for warmer crystalline ices. The obtained results can be employed in astrochemical models to simulate the chemical evolution of interstellar and planetary environments. These findings have implications for astrochemistry and astrobiology, providing insight into crucial chemical processes and helping us understand the chemistry in cold regions in space.Item Effects of the Northern Hemisphere sudden stratospheric warmings on the Sporadic-E layers in the Brazilian sector(Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato ; Resende, Laysa Cristina Araújo; Jesus, Rodolfo de; Fagundes, Paulo Roberto; Batista, Paulo Prado; Pillat, Valdir Gil; Tardelli, Alexandre; Andrioli, Vania F.Tidal and Planetary Wave (PWs) amplitudes are strongly influenced by Sudden Stratospheric Warming (SSW) events. A nonlinear interaction between the tidal winds and planetary waves during the SSW may contribute to the intensification of sporadic-E (Es) layers in the lower thermosphere. This work investigated the relationship between SSW events in the Northern Hemisphere and the Es layer occurrence at low latitudes in the Brazilian sector. We used data from digital ionosondes installed in the observatories of Araguatins (ARA, 5.65◦ S; 48.12◦ W; dip lat. − 5.44◦) and S ̃ao Jos ́e dos Campos (SJC, 23.18◦ S; 45.89◦ W; dip lat. − 21.37◦) to analyze the Es layers. Additionally, we used the temperature, zonal wind, and PWs data at high latitudes in the Northern Hemisphere during the major SSW event that occurred in February/2018 and during the events of Dec/2018–Jan/2019 and Dec/2020–Jan/2021. The results showed a maximum frequency peak of 20 MHz (~5 × 106 electrons.cm− 3) at ARA and SJC during these SSW events. The large values of ftEs, fbEs, and electronic densities were observed between 100 and 115 km height in the Esf/l type layers during daytime or nighttime periods. The results also showed that the number of large values of ftEs, fbEs, and electronic density of the Es layer was much higher in ARA than in SJC, in general. The wavelet power spectrum analyses of the ftEs and fbEs showed a periodicity of 2- days before and after the central day of the SSWs events at the station of ARA, with three prominent peaks in the 2018/2019 event. At the SJC station the quasi-2-day periodicity in the wavelet analyses of the ftEs was observed after the central day in all three SSW events, with a peak before the central day during the 2020/2021 event.Item Enhancing learning of the Grad-Shafranov Equation through scientific literature: part 1 of a physics education series(Sociedade Brasileira de Física) Ojeda González, Arian; Santos, Lenadro Nunes dos; La Luz, Victor Hugo de; Oliveira, Matheus Felipe Cristaldo de; Sousa, Antonio Nilson Laurindo; Prestes, Alan; Klausner, Virgínia; Pilling, SergioThis article provides a comprehensive review of relevant studies in the fields of plasma physics, electromagnetism, and space physics. The aim is to demonstrate how the study of the scientific literature can be used to enhance problem-solving abilities and develop innovative solutions in physics. In this paper, we focus on the study of solutions of the specific Grad-Shafranov equation. Two of the new solutions proposed by Yoon and Lui (2005) are used as a basis for the development of a new solution. The new solution presented has singular points similar to the Yoon-Lui-2 solution, but with an inverted configuration, and also presents less rounded double islands compared to the Yoon-Lui-2 solution. Additionally, the new solution does not exhibit the formation of a current ring, a characteristic of the Yoon-Lui-1 solution, and varying its parameters may lead to higher plasma confinement efficiency. In summary, we illustrate how a thorough analysis of literature can serve as a powerful means for generating innovative approaches to resolving theoretical issues in physics.Item Influence of temperature on the chemical evolution and desorption of pure CO ices irradiated by cosmic-rays analogues(Royal Astronomical Society) Pilling, Sergio; Mateus, Marcelo Silva; Ojeda González, Arian; Ferrão, Luiz Fernando de Araujo; Galvão, Breno R. L.; Boduch, Philippe; Rothard, HermannCarbon monoxide (CO) plays a vital role in interstellar chemistry, existing abundantly in both gaseous and frozen environments. Understanding the radiation-driven chemistry of CO-rich ices is crucial for comprehending the formation and desorption of C-bearing molecules in the interstellar medium (ISM), particularly considering the potential impact of temperature on these processes. We report experimental data on irradiation processing of pure CO ice by cosmic ray analogues (95.2 MeV 136Xe23+ ions) at temperatures of 10, 15, and 20 K, in the IGLIAS set-up coupled to the IRRSUD beamline at GANIL (Caen, France). The evolution of the irradiated frozen samples was monitored by infrared spectroscopy. The computational PROCODA code allows us to quantify the chemical evolution of the samples, determining effective reaction rates coefficients (ERCs), molecular abundances at the chemical equilibrium (CE) phase, and desorption processes. The model integrated 18 chemical species – 8 observed (CO, CO2, C3, O3, C2O, C3O, C3O2, and C5O3) and 10 non-observed but predicted (C, O, C2, O2, CO3, C4O, C5O, C2O2, C2O3, C4O2) – linked via 156 reactions. Our findings reveal temperature-driven influences on molecular abundances at chemical equilibrium, desorption yields and rates, and ERC values. Certain reaction routes exhibit distinct thermochemical behaviours of gas- and ice-phase reactions which may be attributed to the presence of neighbouring molecules within the ice matrix. This study provides pivotal insights into the chemical evolution of CO-enriched ice under irradiation, impacting solid-state astrochemistry, clarifying molecular abundances, and advancing our understanding of ISM chemistry and temperature effects on ionized radiation-processed frozen ices.Item Freya: an educational MATLAB GUI-based tool for generalized Fourier series(Research, Society and Development) Macedo, Humberto Gimenes; Oliveira, Virgínia Klausner de; Gomes, Anna Karina Fontes; Fernandes, Francisco Carlos RochaThe Fourier analysis is a very powerful mathematical tool to decompose functions into their frequency components. Due to this, it has applications in a wide variety of fields inside the realm of science and engineering. As usual, this theory starts with a discussion about the trigonometric Fourier series, the expansion of a function in terms of sines and cosines, and then is generalized in the sense that other functions rather than the trigonometric ones can be used as an orthogonal basis, as the eigenfunctions of some specific Sturm-Liouville problems, such as Bessel functions and Legendre polynomials. In this direction, we present the so- called Freya, an educational graphical user interface (GUI) for the generalized Fourier series developed using the interactive MATLAB (MATrix Laboratory) App Designer environment. We aim to provide a user-friendly tool as a learning aid system for students to gain a comprehensive understanding of the subject as well as for teaching.Item Enhancing learning of the Grad-Shafranov equation through scientific literature: part 2 of a physics education series(Sociedade Brasileira de Física) Santos, Lenadro Nunes dos; Ojeda González, Arian; La Luz, Victor Hugo de; Oliveira, Virgínia Klausner de; Pilling, Sergio; Prestes, Alan; Sousa, Antonio Nilson Laurindo; Oliveira, Matheus Felipe Cristaldo deIn part 1 of our physics education series, we introduced a novel solution based on Yoon-Lui’s solutions 1 and 2. Building upon that, this follow-up presents a new solution obtained by combining the generating functions of Yoon-Lui-1 and Yoon-Lui-3, resulting in a new and simplified general solution. We also calculate the singular points and determine their coordinates for various parameter values. A graphical representation of the solution is presented, showing the magnetic field lines and current density distribution. The behavior of the magnetic field and the effect of varying the parameter are discussed. The observed magnetic islands and singular points are relevant in the fields of Plasma Physics and Space Physics, providing insights into magnetic structures in plasmas and their impact on confinement and stability. Furthermore, this study encourages innovation and equips researchers and students with the necessary tools to make meaningful contributions to the field, emphasizing the integration of scientific literature into physics education to promote a comprehensive understanding of physical concepts and their practical applications.Item Experimental simulation of fast electron bombardment of methanol ice and its implications in astrochemistry(Universidade do Vale do Paraíba) Freitas, Fabricio Moreira; Pilling, SergioNeste trabalho, simulamos experimentalmente o comportamento do gelo de metanol (CH3OH) numa temperatura de 12 K sob bombardeio de um feixe de elétrons rápidos (4.9 keV) na tentativa de reproduzir os processos fisioquímicos induzidos por elétrons em ambientes espaciais. A análise da amostra por espectroscopia infravermelha revela o surgimento de novas espécies, incluindo CO2, CO, H2O e CH4, devido ao processamento pela radiação ionizante. Quantificamos a seção de choque efetiva de destruição do metanol (5.5 × 10-19 cm2) e determinamos a seção choque efetiva de formação para as novas espécies produzidas. Além disso, caracterizamos a fase de equilíbrio químico (EQ), que se torna evidente em fluências mais altas. Calculamos também as abundâncias moleculares e avaliamos o rendimento de dessorção induzido por elétrons rápidos na amostra. Também foi estimado a escala de tempo necessária para atingir o equilíbrio químico em ambientes astrofísicos específicos impactados por elétrons. Este estudo contribui para uma melhor compreensão do efeito do bombardeio de elétrons em gelos astrofísicos e permite comparações significativas com os gelos ricos em compostos orgânicos em ambientes espaciaisItem Exploring the centennial-scale climate history of Southern Brazil with Ocotea porosa (Nees & Mart.) Barroso Tree-Rings(MDPI) Muraja, Daniela Oliveira Silva; Klausner, Virginia; Prestes, Alan; Aakala, Tuomas; Macedo, Humberto Gimenes; Silva, Iuri Rojahn daThis article explores the dendrochronological potential of Ocotea porosa (Nees & Mart) Barroso (Imbuia) for reconstructing past climate conditions in the General Carneiro region, Southern Brazil, utilizing well-established dendroclimatic techniques. A total of 41 samples of Imbuia were subjected to dendroclimatic analysis to reconstruct precipitation and temperature patterns over the period from 1446 to 2011. Notably, we achieved the longest reconstructions of spring precipitation and temperature for the Brazilian southern region, spanning an impressive 566-year timeframe, by employing a mean chronology approach. To achieve our objectives, we conducted a Pearson’s correlation analysis between the mean chronology and the climatic time series, with a monthly temporal resolution employed for model calibration. Impressively, our findings reveal significant correlations with coefficients as high as |rx,P| = 0.32 for precipitation and |rx,T| = 0.45 for temperature during the spring season. Importantly, our climate reconstructions may elucidate a direct influence of the El Niño—South Oscillation phenomenon on precipitation and temperature patterns, which, in turn, are intricately linked to the natural growth patterns of the Imbuia trees. These results shed valuable light on the historical climate variability in the Southern Brazil region and provide insights into the climatic drivers affecting the growth dynamics of Ocotea porosa (Nees & Mart) Barroso.Item Laboratory investigation of x-ray photolysis of ethanol ice and its implication on astrophysical environments(Universidade do Vale do Paraíba) Pilling, Sergio; Freitas, Fabricio MoreiraHere we present experimental results on the irradiation of ethanol ice (CH3CH2OH) by broadband soft X-rays to simulate the effect processing of organic-rich astrophysical ices by space radiation. This molecule was detected in the interstellar medium in molecular clouds like Sagittarius B2 and towards nebulas like Orion KL. The experiments were performed at the Brazilian Synchrotron Facility LNLS/CNPEM, at Campinas, SP. The frozen sample was analyzed in-situ by infrared spectroscopy (IR) in a simulated astrophysical environment at different radiation fluences. The results show the formation of several new molecular species such as CO2, CO, H2O, CH4, CH3(CO)CH3(acetone), and CH3COOH (acetic acid). We determined the effective destruction cross-section of ethanol (~1×10-18cm2) and the formation cross-sections of the daughter species with values between 0.5 to 3.4×10-18cm2. The chemical equilibrium phaseof ice was characterized and desorption yield induced by X-rays was determined (0.13 molecules photon-1). The result helps us to understand the photolysis induced by X-rays in organic-rich ices in space environments.Item Fotólise de gelo de água por raios-x moles e a produção de H2O2 durante as fases de irradiação e aquecimento(Universidade do Vale do Paraíba) Pilling, Sergio; Silva, Rita de Cassia daGelos astrofísicos ricos em H2O (água) estão sempre expostos a radiações ionizantes no espaço, assim como a eventuais mudanças de temperatura. Seus estudos em laboratório permitem compreender seus comportamentos e mudanças químicas, além de permitir a quantificação de parâmetros físico-químicos importantes do próprio gelo. No presente trabalho, uma amostra de gelo de água a 12 K foi irradiada por raios-X moles na linha de luz SGM do LNLS/CNPEM até atingir o equilíbrio químico, e em seguida, foi aquecida até 220 K. Utilizando espectroscopia infravermelha (IR), mapeamos a evolução química da amostra e quantificamos a produção do seu principal produto, a molécula de H2O2. O estudo tem implicações na química das regiões de formação estelar, bem como em regiões frias do sistema solar.