Resultados de Busca

Agora exibindo 1 - 6 de 6
  • Item
    Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes
    (Elsevier) Fagundes, Paulo Roberto; Tsali-Brown, Vera Yesutor; Pillat, Valdir Gil; Arcanjo, Mateus de Oliveira; Venkatesh, Kavutarapu; Habarulema, John Bosco; Bolzan, Maurício José Alves; Jesusm Rodolfo F. de; Abreu, Alessandro José de; Tardelli, Alexandre; Vieira, Francisco; Denardini, Clezio Marcos
    Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.
  • Item
    Effects of the Northern Hemisphere sudden stratospheric warmings on the Sporadic-E layers in the Brazilian sector
    (Elsevier) Fontes Neto, Pedro Alves; Muella, Marcio Tadeu de Assis Honorato ; Resende, Laysa Cristina Araújo; Jesus, Rodolfo de; Fagundes, Paulo Roberto; Batista, Paulo Prado; Pillat, Valdir Gil; Tardelli, Alexandre; Andrioli, Vania F.
    Tidal and Planetary Wave (PWs) amplitudes are strongly influenced by Sudden Stratospheric Warming (SSW) events. A nonlinear interaction between the tidal winds and planetary waves during the SSW may contribute to the intensification of sporadic-E (Es) layers in the lower thermosphere. This work investigated the relationship between SSW events in the Northern Hemisphere and the Es layer occurrence at low latitudes in the Brazilian sector. We used data from digital ionosondes installed in the observatories of Araguatins (ARA, 5.65◦ S; 48.12◦ W; dip lat. − 5.44◦) and S ̃ao Jos ́e dos Campos (SJC, 23.18◦ S; 45.89◦ W; dip lat. − 21.37◦) to analyze the Es layers. Additionally, we used the temperature, zonal wind, and PWs data at high latitudes in the Northern Hemisphere during the major SSW event that occurred in February/2018 and during the events of Dec/2018–Jan/2019 and Dec/2020–Jan/2021. The results showed a maximum frequency peak of 20 MHz (~5 × 106 electrons.cm− 3) at ARA and SJC during these SSW events. The large values of ftEs, fbEs, and electronic densities were observed between 100 and 115 km height in the Esf/l type layers during daytime or nighttime periods. The results also showed that the number of large values of ftEs, fbEs, and electronic density of the Es layer was much higher in ARA than in SJC, in general. The wavelet power spectrum analyses of the ftEs and fbEs showed a periodicity of 2- days before and after the central day of the SSWs events at the station of ARA, with three prominent peaks in the 2018/2019 event. At the SJC station the quasi-2-day periodicity in the wavelet analyses of the ftEs was observed after the central day in all three SSW events, with a peak before the central day during the 2020/2021 event.
  • Item
    Occurrence of Ionospheric irregularities over Brazil and Africa during the 2019 Antarctic minor sudden stratospheric warming
    (Elsevier) Agyei-Yeboah, Ebenezer; Fagundes, Paulo Roberto; Tardelli, Alexandre; Pillat, Valdir Gil; Vieira, Francisco; Arcanjo, Mateus de Oliveira
    The influence of sudden stratospheric warming (SSW) on the ionosphere and ionospheric irregularities has been studied extensively over the years. However, majority of these investigations have been conducted using warming events originating from the northern hemisphere. Only a few studies have been done on ionospheric variations due to the Antarctic SSW events and to the best of our knowledge, there have not been any studies on southern hemisphere SSW and the occurrence of ionospheric irregularities. In this study, the occurrence of ionospheric irregularities during the 2019 minor Southern hemisphere (SH)/Antarctic SSW is investigated. The event occurs in a relatively calm solar and geomagnetic activity period which makes it possible to identify the effects of SSW on the occurrence of irregularities. Three ionosondes located in different latitudinal regions in Brazil as well as a network of ground-based GPS receiver stations located in both Brazil and Africa were used for this undertaking. Complimentary data from the same ionosonde stations using the same months from 2017 and 2018 were also used. On average more Spread-F was observed in 2019 than in 2017 or 2018 at all stations. ROT observations showed more occurrence in the Brazil sectors followed by West Africa and thenEast Africa. It was observed that the occurrence frequency decreased between 8% and 46 % from the pre-SSW phase to ascending/peak phases and from 2018 to 2019 for the peak phase.
  • Item
    Longitudinal variations of the occurrence of F3 and F4 layers within the southern EIA and their dependence on solar cycle
    (Elsevier) Tardelli, Alexandre; Fagundes, Paulo Roberto; Pezzopane, Michael; Pillat, Valdir Gil
    This investigation presents for the first time the seasonal and solar cycle variations of the daytime F-layer multiple stratifications (F3 and F4 layers) near the southern crest of the EIA in two different longitudinal sectors of South America. To perform the study, the ionograms recorded from 2007 to 2015 at Sao Jose´ dos Campos (23.2 S, 45.9 W), Brazil (eastern sector), and at Tucuma´n (26.9 S, 65.4 W), Argentina (western sector), are considered. Both sites present a frequency of occurrence of the F3 and F4 layers which is directly proportional to the solar activity, and an annual variation with a maximum in spring/summer and a minimum in autumn/winter. The main result that came out from the analysis is that the frequency of occurrence of the F3 and F4 layers is higher in the western sector than in the eastern sector, and this could be attributed to a different gravity waves activity characterizing the two longitudinal sectors. 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
  • Item
    Ground and satellite-based observations of ionospheric plasma bubbles and blobs at 5.65° latitude in the Brazilian sector
    (Elsevier) Agyei-Yeboah, Ebenezer; Fagundes, Paulo Roberto; Tardelli, Alexandre; Pillat, Valdir Gil; Pignalberi, Alessio; Kavutarapu, Venkatesh; Pezzopane, Michael; Vieira, Francisco
    This investigation uses simultaneous observations from all-sky imager system and an ionosonde collocated at Araguatins (5.65° S, 48.07° W and dip-latitude of 4.17° S), a near-equatorial region in Brazil. These simultaneous observations were used to investigate the occurrence of plasma bubbles and blobs in the field of the imaging system and their association with atypical range Spread-F signature in ionograms. Also, in-situ observation of plasma density from Swarm satellites were used to support the ground-based observations. Using a few cases, a methodology will be established to identify in the plasma blobs (atypical ESF) in the ionograms when there is the simultaneous observation of plasma bubbles and blobs in the field of view of the ionosonde. For this purpose, simultaneous sequence of OI 630.0 nm nightglow images and ionograms are presented for different case studies; 1. when there is the absence of a plasma bubble or blob, 2. when there is only the occurrence of plasma bubbles and 3. when there is the occurrence of plasma bubbles and blobs, in order to compare traces in the ionogram in all these case studies. With these we can cover all kinds of signatures in the ionograms corresponding to no irregularities, plasma bubbles only and plasma bubbles-blobs. These OI 630.0 nm nightglow and ionograms recorded simultaneously make it possible to establish a novel methodology to recognize in ionograms cases when there is the occurrence of Spread-F signature associated with bubble-blob in the FOV of the ionosonde.
  • Item
    Ionospheric disturbances in a large area of the terrestrial globe by two strong solar flares of September 6, 2017, the strongest space weather events in the last decade
    (Elsevier) Fagundes, Paulo Roberto; Pezzopane, Michael; Habarulema, John Bosco; Venkatesh, Karnam; Dias, Maukers Alem Lima; Tardelli, Alexandre; Abreu, Alessandro José de; Pillat, Valdir Gil; Pignalberi, Alessio; Bolzan, Maurício José Alves; Ribeiro, Brunno Augusto Gomes; Vieira, Francisco; Raulin, Jean-Pierre; Denardini, Clezio Marcos; Seemala, Gopi K.; Arcanjo, Mateus de Oliveira
    On September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate cor- responding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Elec- tron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a dura- tion of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geo- magnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.