Produção acadêmica-PPGEB
URI Permanente para esta coleção
Navegar
Navegando Produção acadêmica-PPGEB por Assunto "Antifungal therapy"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Item (PhSe)2 and (pCl-PhSe)2 organochalcogen compounds inhibit Candida albicans adhesion to human endocervical (HeLa) cells and show anti- biofilm activities(Taylor & Francis) Silva, Bruna Marques da; Braga, Marília Toledo; Passos, Juliene Cristina da Silva; Carvalho, Moisés Lopes; Rosseti, Isabela Bueno; Amorim, Laís Mayara Machado de; Rocha, João Batista Teixeira da; Silva, Carlos Alberto; Costa, Maricilia SilvaAdhesion capacity on biological surfaces and biofilm formation is considered an important step in the infection process by Candida albicans. The ability of (PhSe)2 and (pCl-PhSe)2, two synthetic organic selenium (organochalcogen) compounds, to act on C. albicans virulence factors related to adhesion to human endocervical (HeLa) cell surfaces and their anti-biofilm activities was ana- lyzed. Both organochalcogen compounds inhibited C. albicans adhesion to HeLa cells, depend- ent on compound concentrations. (PhSe)2 (at 20 mM; p 1⁄4 0.0012) was significantly more effective than (pCl-PhSe)2 (at 20 mM; p 1⁄4 0.0183) compared with the control. (PhSe)2 inhibited biofilm for- mation and decreased biofilm viability in both early and mature biofilms more efficiently than (pCl-PhSe)2. Overall, the organochalcogen compounds, especially (PhSe)2, were demonstrated to be effective antifungal drugs against C. albicans virulence factors related to epithelial cell surface adhesion and the formation and viability of biofilms.